现代防御技术 ›› 2022, Vol. 50 ›› Issue (6): 68-82.DOI: 10.3969/j.issn.1009-086x.2022.06.009
收稿日期:
2022-03-12
修回日期:
2022-07-14
出版日期:
2022-12-28
发布日期:
2023-01-06
作者简介:
徐安(1984-),男,甘肃庆阳人。副教授,博士,研究方向为航空装备作战使用及空战智能决策技术。通信地址:710038 陕西省西安市灞桥区灞陵路一号E-mail: An XU1(), Wan-ze ZHENG2, Zhi-fei XI1, Lu-fei DANG3
Received:
2022-03-12
Revised:
2022-07-14
Online:
2022-12-28
Published:
2023-01-06
摘要:
针对超视距空战决策问题,提出一种融合战术实施距离和导弹攻击区等先验知识,并具备进化能力的决策树模型。首先,分析空战制胜机理,建立超视距空战态势模型和战术实施距离模型,在此基础上引入超视距空战因子,建立态势评估模型和决策变量集;其次,基于战术实施距离建立超视距战术动作库,作为解空间动作集;第三,构建基于专家知识规则的决策树,并针对决策树参数进化需求,提出一种基于惯性权重动态调整和混沌优化的新型粒子群优化方法,以提高决策规则树进化效率;最后,基于仿真实验给出不同条件下空战机动决策仿真算例并进行了分析。仿真结果表明,提出的进化式决策树能有效融合战术实施距离、导弹攻击区等先验知识,并具备进化能力,能够有效解决超视距空战战术决策问题。
中图分类号:
徐安, 郑万泽, 奚之飞, 党璐菲. 基于进化式决策树的超视距空战机动决策模型[J]. 现代防御技术, 2022, 50(6): 68-82.
An XU, Wan-ze ZHENG, Zhi-fei XI, Lu-fei DANG. Improved Evolutionary Decision Tree for BVR Air Combat Decision Making[J]. Modern Defense Technology, 2022, 50(6): 68-82.
I2=0 | I2=1 | I2=2 | |
---|---|---|---|
I1=0 | 1 | 0 | 1 |
I1=1 | 2 | 0 | 2 |
I1=2 | 1 | 2 | 0 |
表1 规则的表格化(编码)
Table 1 Tabularization of rules (Coding)
I2=0 | I2=1 | I2=2 | |
---|---|---|---|
I1=0 | 1 | 0 | 1 |
I1=1 | 2 | 0 | 2 |
I1=2 | 1 | 2 | 0 |
离散值 | 2 | 1 | 0 |
表2 λA,λT角离散方法
Table 2 Discrete method of angle λA,λT
离散值 | 2 | 1 | 0 |
离散值 | 2 | 1 | 0 |
表3 距离ρ离散方法
Table 3 Discrete method of distance D
离散值 | 2 | 1 | 0 |
0 | |||
---|---|---|---|
离散值 | 0 | 1 | 2 |
表4 归一化累积威胁Ts离散方法
Table 4 Discrete method of entry time Ts
0 | |||
---|---|---|---|
离散值 | 0 | 1 | 2 |
0 | |||
---|---|---|---|
离散值 | 0 | 1 | 2 |
表5 归一化累积威胁Tm离散方法
Table 5 Discrete method of entry time Tm
0 | |||
---|---|---|---|
离散值 | 0 | 1 | 2 |
离散值 | 0 | 1 | 2 |
表6 高差ΔH离散方法
Table 6 Discrete method of height differenceΔH
离散值 | 0 | 1 | 2 |
OP | S∈[0,0.3) | S∈[0.3,0.7) | S∈[0.7,1] |
---|---|---|---|
0 | 1 | 1 | |
1 | 1 | 2 | |
1 | 2 | 3 |
表7 攻击优势评估规则
Table 7 Attack advantage evaluation rules
OP | S∈[0,0.3) | S∈[0.3,0.7) | S∈[0.7,1] |
---|---|---|---|
0 | 1 | 1 | |
1 | 1 | 2 | |
1 | 2 | 3 |
TR | Ts=0 | Ts=1 | Ts=2 |
---|---|---|---|
Tm=0 | 0 | 1 | 2 |
Tm=1 | 1 | 2 | 3 |
Tm=2 | 2 | 3 | 3 |
表8 威胁评估规则
Table 8 Threat evaluation rules
TR | Ts=0 | Ts=1 | Ts=2 |
---|---|---|---|
Tm=0 | 0 | 1 | 2 |
Tm=1 | 1 | 2 | 3 |
Tm=2 | 2 | 3 | 3 |
OD | OP=0 | OP =1 | OP =2 | OP =3 |
---|---|---|---|---|
TR=0 | 1 | 1 | 1 | 1 |
TR =1 | 1 | 1 | 1 | 1 |
TR =2 | 0 | 0 | 0/1 | 1 |
TR =3 | 0 | 0 | 0 | 0/1 |
表9 攻防决策规则
Table 9 Offence and defense decision rules
OD | OP=0 | OP =1 | OP =2 | OP =3 |
---|---|---|---|---|
TR=0 | 1 | 1 | 1 | 1 |
TR =1 | 1 | 1 | 1 | 1 |
TR =2 | 0 | 0 | 0/1 | 1 |
TR =3 | 0 | 0 | 0 | 0/1 |
HD | |||
---|---|---|---|
OD =0 | 2下降 | 0保持 | 0保持 |
OD =1 | 0保持 | 2下降 | 1爬升 |
表10 高度决策规则
Table 10 Height decision rules
HD | |||
---|---|---|---|
OD =0 | 2下降 | 0保持 | 0保持 |
OD =1 | 0保持 | 2下降 | 1爬升 |
AD | OP=0 | OP =1 | OP =2 | OP =3 |
---|---|---|---|---|
TR =0 | 3 | 3 | 3 | 3 |
TR =1 | 3 | 3 | 2 | 3 |
TR =2 | 2 | 2 | 1 | 2 |
TR =3 | 0 | 0 | 0 | 0 |
表11 方位决策规则
Table 11 Area decision rules
AD | OP=0 | OP =1 | OP =2 | OP =3 |
---|---|---|---|---|
TR =0 | 3 | 3 | 3 | 3 |
TR =1 | 3 | 3 | 2 | 3 |
TR =2 | 2 | 2 | 1 | 2 |
TR =3 | 0 | 0 | 0 | 0 |
VD | OP=0 | OP =1 | OP =2 | OP =3 |
---|---|---|---|---|
OD =0 | 1 | 1 | 0 | 2 |
OD =1 | 2 | 0 | 1 | 1 |
表12 速度决策规则
Table 12 Velocity decision rules
VD | OP=0 | OP =1 | OP =2 | OP =3 |
---|---|---|---|---|
OD =0 | 1 | 1 | 0 | 2 |
OD =1 | 2 | 0 | 1 | 1 |
SD | OP=0 | OP =1 | OP =2 | OP =3 |
---|---|---|---|---|
OD =0 | 0 | 0 | 0 | 0 |
OD =1 | 2 | 2 | 1 | 1 |
表13 传感器决策规则
Table 13 Sensor decision rules
SD | OP=0 | OP =1 | OP =2 | OP =3 |
---|---|---|---|---|
OD =0 | 0 | 0 | 0 | 0 |
OD =1 | 2 | 2 | 1 | 1 |
ED | TR=0 | TR =1 | TR =2 | TR =3 |
---|---|---|---|---|
OD =0 | 0 | 0 | 2 | 2 |
OD =1 | 0 | 0 | 1 | 1 |
表14 电子战决策规则
Table 14 Electronic warfare decision rules
ED | TR=0 | TR =1 | TR =2 | TR =3 |
---|---|---|---|---|
OD =0 | 0 | 0 | 2 | 2 |
OD =1 | 0 | 0 | 1 | 1 |
1 | 丁达理, 王杰, 董康生, 等. 基于RBF网络的UCAV战术机动轨迹快速生成方法[J].系统工程与电子技术, 2019, 41(1): 96-104. |
DING Da-li, WANG Jie, DONG Kang-sheng, et al. Rapid Generation Method of UCAV Tactical Maneuver Trajectory Based on RBF Network[J]. Systems Engineering and Electronics, 2019, 41(1): 96-104. | |
2 | 钟友武, 柳嘉润, 杨凌宇, 等. 自主近距空战中机动动作库及其综合控制系统[J]. 航空学报, 2008, 29(S1): 114-121. |
ZHONG You-wu, LIU Jia-run, YANG Ling-yu, et al. Maneuver Library and Integrated Control System for Autonomous Close-in Air Combat[J]. Acta Aeronautica et Astronautica Sinica, 2008,29(S1): 114-121. | |
3 | 董肖杰, 余敏建, 刘亚倩. 战斗机飞行航迹操纵优化控制建模仿真[J]. 计算机仿真, 2017, 34(8): 50-53, 68. |
DONG Xiao-jie, XU Min-jian, LIU Ya-qian. Modeling and Simulation of Fighter Flight Trail Control Optimization[J]. Computer Simulation, 2017, 34(8): 50-53, 68. | |
4 | 徐安,高春庆,寇英信,等. 基于BFM方法的1vs1近距自主空战决策[J].系统工程与电子技术, 2020, 42(11): 2513-2519. |
XU An, GAO Chun-qing, KOU Ying-xin, et al. Autonomous Air Combat Decision of 1vs1 Based on BFM Method[J]. Systems Engineering and Electronics, 2020, 42(11): 2513-2519. | |
5 | 李飞, 俞利新, 王龙, 等. 中断雷达距离跟踪的战斗机机动控制方法[J]. 北京航空航天大学学报, 2014, 40(4): 467-472. |
LI Fei, YU Li-xin, WANG Long, et al. Fighter Maneuver Control Method of Radar Range Tracking Interrupt[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(4):467-472. | |
6 | 傅莉, 谢福怀, 孟光磊, 等. 基于滚动时域的无人机空战决策专家系统[J]. 北京航空航天大学学报, 2015, 41(11): 1994-1999. |
FU Li, XIE Fu-huai, MENG Guang-lei, et al. An UAV Air-Combat Decision Expert System Based on Receding Horizon Control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1994-1999. | |
7 | 冯志峰, 刘鸿福, 陈浩. 基于规则推理的无人机对地攻击目标选择自主决策[J]. 指挥控制与仿真, 2015, 37(4): 31-35. |
FENG Zhi-feng, LIU Hong-fu, CHEN Hao. Self-Determined Decision-Making About Target Selection in Air-to-Ground Attacking of UAV Based on Rule Reasoning[J]. Command Control & Simulation, 2015, 37(4): 31-35. | |
8 | 王炫, 王维嘉, 宋科璞, 等. 基于进化式专家系统树的无人机空战决策技术[J]. 兵工自动化, 2019, 38(1): 42-47. |
WANG Xuan, WANG Wei-jia, SONG Ke-pu, et al. UAV Air Combat Decision Based on Evolutionary Expert System Tree[J]. Ordnance Industry Automation, 2019, 38(1): 42-47. | |
9 | 黄长强, 赵克新, 韩邦杰, 等. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40(10): 2447-2452. |
HUANG Chang-qiang, ZHAO Ke-xin, HAN Bang-jie, et al. Maneuvering Decision-Making Method of UAV Based on Approximate Dynamic Programming[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2447-2452. | |
10 | 朱德法, 纪峰波, 管莹莹. 第四代歼击机空战战术决策研究[J]. 指挥控制与仿真, 2012, 34(1): 41-43, 63. |
ZHU De-fa, JI Feng-bo, GUAN Ying-ying. Study on Air Combat Tactics Decision-Making for the Fourth Generation Fighters[J]. Command Control & Simulation, 2012, 34(1): 41-43, 63. | |
11 | 王志刚,张扬,李自强. 基于试探机动算法的专家系统优化方法[J]. 飞机设计, 2021, 41(4): 15-19, 42. |
WANG Zhi-gang, ZHANG Yang, LI Zi-qiang. Expert System Optimization Method Based on Tempting Maneuver Algorithm[J]. Aircraft Design, 2021, 41(4): 15-19, 42. | |
12 | 陈希亮,李清伟,孙彧. 基于博弈对抗的空战智能决策关键技术[J]. 指挥信息系统与技术, 2021, 12(2): 1-6. |
CHEN Xi-liang, LI Qing-wei, SUN Yu. Key Technologies for Air Combat Intelligent Decision Based on Game Confrontation[J]. Command Information System and Technology, 2021, 12(2): 1-6. | |
13 | 赵克新,黄长强,魏政磊,等. 改进决策树的无人机空战态势估计[J]. 哈尔滨工业大学学报, 2019, 51(4): 66-73. |
ZHAO Ke-xin, HUANG Chang-qiang, WEI Zheng-lei, et al. Situation Assessment for Unmanned Aerial Vehicle Air Combat Based on Anti-Reasoning Rules Decision Tree[J]. Journal of Harbin Institute of Techno-logy, 2019, 51(4): 66-73. | |
14 | 刘东亮,查春林. 航空兵旅作战效能评估方法研究[J]. 军事运筹与系统工程, 2018, 32(2): 30-35. |
LIU Dong-liang, ZHA Chun-lin. A Study on Evaluation Method of Aviation Brigade Operational Effectiveness[J]. Military Operations Research and Assessment, 2018, 32(2): 30-35. | |
15 | 焦亚男,马杰. 一种改进的MEP决策树剪枝算法[J].河北工业大学学报, 2019, 48(6): 24-29. |
JIAO Ya-nan, MA Jie. An Improved Pruning Algorithm for MEP Decision Tree[J]. Journal of Hebei University of Technology, 2019, 48(6): 24-29. |
[1] | 姜相争, 李凯, 李贵茹, 赵张鹏. 云环境条件下智能决策支持系统理论研究[J]. 现代防御技术, 2023, 51(1): 35-41. |
[2] | 薛德鑫, 单涛, 董士军, 张进. 一种非协作通信信号调制方式识别方法[J]. 现代防御技术, 2022, 50(5): 152-159. |
[3] | 姬正一, 陈阳, 沈培志, 韩先平, 齐鸿坤. 决策树集成方法在反舰导弹效能评估中的应用[J]. 现代防御技术, 2021, 49(4): 15-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||