现代防御技术 ›› 2025, Vol. 53 ›› Issue (3): 150-158.DOI: 10.3969/j.issn.1009-086x.2025.03.017

• 目标特性与探测跟踪技术 • 上一篇    

成像引信二维稀疏MIMO阵列设计

贺旭, 李玉钊, 赵康, 黄立峰, 张梦宇   

  1. 北京遥感设备研究所,北京 100854
  • 收稿日期:2023-10-16 修回日期:2024-02-28 出版日期:2025-06-28 发布日期:2025-07-01
  • 作者简介:贺旭(1998-),男,河南驻马店人。工程师,硕士,研究方向为雷达成像。

Design of Two-Dimensional Sparse MIMO Array for Imaging Fuze

Xu HE, Yuzhao LI, Kang ZHAO, Lifeng HUANG, Mengyu ZHANG   

  1. Beijing Institute of Remote Sensing Equipment,Beijing 100854,China
  • Received:2023-10-16 Revised:2024-02-28 Online:2025-06-28 Published:2025-07-01

摘要:

针对MIMO阵列雷达在成像引信上的应用,对引信近场成像中存在的等效相位中心误差进行分析并给出基于泰勒展开的二次项误差补偿方法。围绕弹上空间有限的前提条件,考虑收发天线耦合的影响,结合天线波束方向图的性能,给出收发阵元的半径分布区间作为有效集。在有效集的基础上提出基于分步粒子群(two-step particle swarm optimization,TS-PSO)算法的稀疏MIMO阵列优化方法,得到优化后的二维稀疏MIMO阵列。在此基础上,基于其接收的回波信号实现对等效相位中心误差和运动误差进行补偿,从而获取成像结果。由仿真结果可知,基于TS-PSO设计的二维稀疏MIMO阵列能够满足引信近场成像对分辨率和成像质量的需求,为下一步的实际应用奠定理论基础。

关键词: 多输入多输出, 稀疏阵列, 分步粒子群算法, 近场成像, 成像引信

Abstract:

Aiming at the application of MIMO array radar in imaging fuze, the equivalent phase center error in near-field imaging of fuze is analyzed and the quadratic error compensation method based on Taylor expansion is given. Based on the premise of limited space on the missile, considering the influence of the coupling of the transmitting and receiving antennas, combined with the performance of the antenna beam pattern, the radius distribution interval of the transmitting and receiving array elements is given as the effective set. Based on the effective set, this paper proposes a sparse MIMO array optimization method based on two-step particle swarm optimization (TS-PSO), and obtains the optimized two-dimensional sparse MIMO array. Based on the received echo signal, the equivalent phase center error and motion error are compensated to obtain the imaging results. The simulation results show that the two-dimensional sparse MIMO array based on TS-PSO can meet the requirements of resolution and imaging quality of fuze near-field imaging, which lays a theoretical foundation for the next practical application.

Key words: multiple-input-multiple-output(MIMO), sparse array, two-step particle swarm optimization(TS-PSO) algorithm, near-field imaging, imaging fuze

中图分类号: