[1] |
陈洁钰, 姚佩阳, 税冬东, 等.基于结构熵和PSO-RBF的空战动态威胁评估[J].电光与控制, 2014, 21(11):51-56.CHEN Jie-yu, YAO Pei-yang, SHUI Dong-dong, et al.Air Combat Dynamic Threat Assessment Based on Structure Entropy and PSO-RBF[J].Electronics Optics & Control, 2014, 21(11):51-56.
|
[2] |
张堃, 周德云.基于熵的TOPSIS法空战多目标威胁评估[J].系统工程与电子技术, 2007, 29(9):1493-1495.ZHANG Kun, ZHOU De-yun.Topsis Method Based on Entropy in Evaluating the Air Multi-Target Threat[J].Systems Engineering and Electronics, 2007, 29(9):1493-1495.
|
[3] |
肖冰松, 方洋旺, 胡诗国, 等.一种新的超视距空战威胁评估方法[J].系统工程与电子技术, 2009, 31(9):2163-2166.XIAO Bing-song, FANG Yang-wang, HU Shi-guo, et al.New Threat Assessment Method in Beyond-the-Horizon Range Air Combat[J].Systems Engineering and Electronics, 2009, 31(9):2163-2166.
|
[4] |
郭辉, 徐浩军, 刘凌.基于回归型支持向量机的空战目标威胁评估[J].北京航空航天大学学报, 2010, 36(1):123-126.GUO Hui, XU Hao-jun, LIU Ling.Target Threat Assessment of Air Combat Based on Support Vector Machines for Regression[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1):123-126.
|
[5] |
张才坤, 冯琦, 张堃.基于IFE的改进TOPSIS法空战多目标威胁评估[J].飞行力学, 2014, 32(3):281-284.ZHANG Cai-kun, FENG Qi, ZHANG Kun.Application of Improved TOPSIS Based on IFE in Evaluating Sequence of Air Multi-Target Threat[J].Flight Dynamics, 2014, 32(3):281-284.
|
[6] |
董彦非, 王礼沅, 张恒喜.战斗机空战效能评估的综合指数模型[J].航空学报, 2006, 27(6):1084-1087.DONG Yan-fei, WANG Li-yuan , ZHANG Heng-xi.Synthesized Index Model for Fighter Plane Air Combat Effectiveness Assessment[J].Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1084-1087.
|
[7] |
肖亮, 黄俊, 徐钟书.基于空域划分的超视距空战态势威胁评估[J].北京航空航天大学学报, 2013, 39(10):1309-1313.XIAO Liang, HUANG Jun, XU Zhong-shu.Modeling Air Combat Situation Assessment Based on Combat Area Division[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10):1309-1313.
|
[8] |
龚胜科, 徐浩军, 苏晨, 等.基于区间数的第4代战斗机空战效能评估[J].火力与指挥控制, 2012, 37(5):102-109.GONG Sheng-ke, XU Hao-jun, SU Chen, et al.Study on Evaluation for Aerial Warfare Efficiency of the Fourth Generation Fighter Based on Interval Number[J].Fire Control & Command Control, 2012, 37(5):102-109.
|
[9] |
王楚燕, 战晓苏.基于区间数排序的高超声速飞行器目标威胁评估方法[J].军事运筹与系统工程, 2017, 31(1):17-21.WANG Chu-yan, ZHAN Xiao-su.Target Threat Assessment of Hypersonic Vehicle Based on Interval Number Ranking[J].Military Operations Research and Systems Engineering, 2017, 31(1):17-21.
|
[10] |
郑昌, 董文洪, 牛庆功, 等.基于AHP和模糊综合评判的无人机效能评估[J].舰船电子工程, 2009, 29(6):71-73.ZHENG Chang, DONG Wen-hong, NIU Qing-gong, et al.Efficiency Evaluation of UAV System Based on AHP and Fuzzy Integrated[J].Ship Electronic Engineering, 2009, 29(6):71-73.
|
[11] |
梁广东, 卢广山, 张安.基于组合赋权法机场毁伤效果的模糊综合评判[J].火力与指挥控制, 2013, 38(12):75-78.LIANG Guang-dong, LU Guang-shan, ZHANG An.Fuzzy Comprehensive Evaluation for Airdrome Damage Effect Based on Combination Weights Method[J].Fire Control & Command Control, 2013, 38(12):75-78.
|
[12] |
张昌龙, 周林, 张文.基于模糊综合评判的防空作战演习效果评估.[J].火力与指挥控制, 2011, 36(12):48-50.ZHANG Chang-long, ZHOU Lin, ZHANG Wen.Study on Exercise Effect of Air Defense Operation Based on Fuzzy Synthetic Evaluation[J].Fire Control & Command Control, 2011, 36(12):48-50.
|
[13] |
付昭旺, 寇英信, 王琳, 等.基于模糊综合评判法的空战多目标威胁评估[J].电光与控制, 2009, 16(9):29-32.FU Zhao-wang, KOU Ying-xin, WANG Lin, et al.Multi-Target Threat Assessment of Air Combat Based on Synthesis Fuzzy Assessment Method[J].Electronics Optics & Control, 2009, 16(9):29-32.
|
[14] |
郭辉, 徐浩军, 谷向东, 等.基于离差最大化的空战目标威胁评估[J].电光与控制, 2010, 17(9):13-16.GUO Hui, XU Hao-jun, GU Xiang-dong, et al.Target Threat Assessment for Air Combat Based on Maximizing Deviation[J].Electronics Optics & Control, 2010, 17(9):13-16.
|
[15] |
郭辉, 任博, 吕英军, 等.基于区间数理论的空战目标威胁评估[J].火力与指挥控制, 2013, 38(6):31-34.GUO Hui, REN Bo, L Ying-jun, et al.Target Threat Assessment for Air Combat Based on Intervals Theory[J].Fire Control & Command Control, 2013, 38(6):31-34.
|