现代防御技术 ›› 2022, Vol. 50 ›› Issue (3): 61-77.DOI: 10.3969/j.issn.1009-086x.2022.03.009
陈致远1,2, 沈堤1, 余付平1, 谭芮锶1, 杨天雨1, 黄益恒1
收稿日期:
2021-09-07
修回日期:
2021-12-28
出版日期:
2022-06-28
发布日期:
2022-07-01
作者简介:
陈致远(1993-),男,河南洛阳人。硕士生,主要研究方向为航空管制指挥与安全。
基金资助:
Zhi-yuan CHEN1,2, Di SHEN1, Fu-ping YU1, Rui-si TAN1, Tian-yu YANG1, Yi-heng HUANG1
Received:
2021-09-07
Revised:
2021-12-28
Online:
2022-06-28
Published:
2022-07-01
摘要:
为提高空中目标敌我识别能力,促进联合作战效能提升,从战场空域控制的角度出发,提出了一种基于空域协同的空中目标综合识别方法。对战场空域控制的基本内涵、作战任务、实施方法进行了介绍,理清了空中目标综合识别与战场空域控制的内在联系。围绕空域协同措施对美军空中目标敌我识别思想进行了简述,由此引出了空中目标综合识别的基本概念、识别流程与判别逻辑。依托D-S证据理论等数学工具,对空中目标综合识别的工程化应用思路进行了研究。通过实例计算验证了该方法的可靠性,可为相关研究提供一定的参考。
中图分类号:
陈致远, 沈堤, 余付平, 谭芮锶, 杨天雨, 黄益恒. 基于空域协同的空中目标综合识别方法[J]. 现代防御技术, 2022, 50(3): 61-77.
Zhi-yuan CHEN, Di SHEN, Fu-ping YU, Rui-si TAN, Tian-yu YANG, Yi-heng HUANG. Air Target Comprehensive Identification Method Based on Airspace Coordinating Measures[J]. Modern Defense Technology, 2022, 50(3): 61-77.
序号 | H | V | C | FR | PA | BA | FO |
---|---|---|---|---|---|---|---|
1 | H1 | V1 | C1 | FR5 | PA4 | BA1 | FO1 |
2 | H1 | V1 | C2 | FR5 | PA4 | BA1 | FO1 |
3 | H1 | V1 | C3 | FR5 | PA4 | BA1 | FO1 |
4 | H1 | V1 | C4 | FR4 | PA5 | BA2 | FO2 |
5 | H1 | V1 | C5 | FR4 | PA5 | BA2 | FO2 |
表1 空中目标综合识别模糊推理规则
Table 1 Air target comprehensive identification of fuzzy reasoning rules
序号 | H | V | C | FR | PA | BA | FO |
---|---|---|---|---|---|---|---|
1 | H1 | V1 | C1 | FR5 | PA4 | BA1 | FO1 |
2 | H1 | V1 | C2 | FR5 | PA4 | BA1 | FO1 |
3 | H1 | V1 | C3 | FR5 | PA4 | BA1 | FO1 |
4 | H1 | V1 | C4 | FR4 | PA5 | BA2 | FO2 |
5 | H1 | V1 | C5 | FR4 | PA5 | BA2 | FO2 |
T | IFF | 应答 次数 | ACM | 飞行参数 | ||
---|---|---|---|---|---|---|
H | V | C | ||||
1 | 1 | 7 | 1 | 1 218 | 310 | 271 |
2 | 7 | 2 | 1 215 | 306 | 271 | |
3 | 7 | 3 | 1 205 | 303 | 270.5 | |
2 | 1 | 8 | 1 | 1 213 | 315 | 270 |
2 | 8 | 2 | 1 210 | 308 | 269 | |
3 | 7 | 3 | 1 201 | 304 | 271 | |
3 | 1 | 7 | 1 | 1 212 | 312 | 270 |
2 | 9 | 2 | 1 209 | 304 | 269.5 | |
3 | 7 | 3 | 1 198 | 305 | 270 |
表2 目标1的探测数据
Table 2 Target 1 detection data
T | IFF | 应答 次数 | ACM | 飞行参数 | ||
---|---|---|---|---|---|---|
H | V | C | ||||
1 | 1 | 7 | 1 | 1 218 | 310 | 271 |
2 | 7 | 2 | 1 215 | 306 | 271 | |
3 | 7 | 3 | 1 205 | 303 | 270.5 | |
2 | 1 | 8 | 1 | 1 213 | 315 | 270 |
2 | 8 | 2 | 1 210 | 308 | 269 | |
3 | 7 | 3 | 1 201 | 304 | 271 | |
3 | 1 | 7 | 1 | 1 212 | 312 | 270 |
2 | 9 | 2 | 1 209 | 304 | 269.5 | |
3 | 7 | 3 | 1 198 | 305 | 270 |
T | IFF | 应答 次数 | ACM | 飞行参数 | ||
---|---|---|---|---|---|---|
H | V | C | ||||
1 | 1 | 6 | 1 | 1 160 | 270 | 266 |
2 | 5 | 2 | 1 158 | 335 | 273 | |
3 | 6 | 3 | 1 165 | 328 | 274 | |
2 | 1 | 6 | 1 | 1 230 | 275 | 268 |
2 | 6 | 2 | 1 235 | 330 | 271 | |
3 | 6 | 3 | 1 225 | 332 | 272 | |
3 | 1 | 7 | 1 | 1 165 | 273 | 267 |
2 | 7 | 2 | 1 260 | 325 | 272 | |
3 | 6 | 3 | 1 163 | 335 | 268 |
表3 目标2的探测数据
Table 3 Target 2 detection data
T | IFF | 应答 次数 | ACM | 飞行参数 | ||
---|---|---|---|---|---|---|
H | V | C | ||||
1 | 1 | 6 | 1 | 1 160 | 270 | 266 |
2 | 5 | 2 | 1 158 | 335 | 273 | |
3 | 6 | 3 | 1 165 | 328 | 274 | |
2 | 1 | 6 | 1 | 1 230 | 275 | 268 |
2 | 6 | 2 | 1 235 | 330 | 271 | |
3 | 6 | 3 | 1 225 | 332 | 272 | |
3 | 1 | 7 | 1 | 1 165 | 273 | 267 |
2 | 7 | 2 | 1 260 | 325 | 272 | |
3 | 6 | 3 | 1 163 | 335 | 268 |
T | IFF | 应答 次数 | ACM | 飞行参数 | ||
---|---|---|---|---|---|---|
H | V | C | ||||
1 | 1 | 6 | 1 | 1 247 | 339 | 274 |
2 | 7 | 2 | 1 239 | 332 | 272 | |
3 | 6 | 3 | 1 245 | 329 | 273 | |
2 | 1 | 5 | 1 | 1 245 | 338 | 265 |
2 | 6 | 2 | 1 238 | 328 | 266 | |
3 | 4 | 3 | 1 245 | 330 | 266 | |
3 | 1 | 5 | 1 | 1 248 | 335 | 275 |
2 | 4 | 2 | 1 245 | 333 | 273 | |
3 | 4 | 3 | 1 250 | 335 | 274 |
表4 目标3的探测数据
Table 4 Target 3 detection data
T | IFF | 应答 次数 | ACM | 飞行参数 | ||
---|---|---|---|---|---|---|
H | V | C | ||||
1 | 1 | 6 | 1 | 1 247 | 339 | 274 |
2 | 7 | 2 | 1 239 | 332 | 272 | |
3 | 6 | 3 | 1 245 | 329 | 273 | |
2 | 1 | 5 | 1 | 1 245 | 338 | 265 |
2 | 6 | 2 | 1 238 | 328 | 266 | |
3 | 4 | 3 | 1 245 | 330 | 266 | |
3 | 1 | 5 | 1 | 1 248 | 335 | 275 |
2 | 4 | 2 | 1 245 | 333 | 273 | |
3 | 4 | 3 | 1 250 | 335 | 274 |
目标 | 时刻 | 基本概率赋值 | ||||
---|---|---|---|---|---|---|
FR | PA | BA | FO | θ | ||
1 | 1 | 0.394 | 0.377 | 0.036 | 0.026 | 0.167 |
2 | 0.486 | 0.247 | 0.038 | 0.032 | 0.197 | |
3 | 0.510 | 0.290 | 0.030 | 0.023 | 0.147 | |
综合识别结果 | 0.689 | 0.280 | 0.010 | 0.007 | 0.014 | |
2 | 1 | 0.136 | 0.398 | 0.209 | 0.078 | 0.179 |
2 | 0.175 | 0.469 | 0.123 | 0.053 | 0.180 | |
3 | 0.341 | 0.193 | 0.113 | 0.076 | 0.277 | |
综合识别结果 | 0.211 | 0.586 | 0.129 | 0.043 | 0.031 | |
3 | 1 | 0.235 | 0.321 | 0.147 | 0.072 | 0.225 |
2 | 0.089 | 0.324 | 0.345 | 0.098 | 0.144 | |
3 | 0.066 | 0.163 | 0.442 | 0.127 | 0.202 | |
综合识别结果 | 0.091 | 0.357 | 0.455 | 0.070 | 0.027 |
表5 3批目标的识别结果
Table 5 Three batches of target identification results
目标 | 时刻 | 基本概率赋值 | ||||
---|---|---|---|---|---|---|
FR | PA | BA | FO | θ | ||
1 | 1 | 0.394 | 0.377 | 0.036 | 0.026 | 0.167 |
2 | 0.486 | 0.247 | 0.038 | 0.032 | 0.197 | |
3 | 0.510 | 0.290 | 0.030 | 0.023 | 0.147 | |
综合识别结果 | 0.689 | 0.280 | 0.010 | 0.007 | 0.014 | |
2 | 1 | 0.136 | 0.398 | 0.209 | 0.078 | 0.179 |
2 | 0.175 | 0.469 | 0.123 | 0.053 | 0.180 | |
3 | 0.341 | 0.193 | 0.113 | 0.076 | 0.277 | |
综合识别结果 | 0.211 | 0.586 | 0.129 | 0.043 | 0.031 | |
3 | 1 | 0.235 | 0.321 | 0.147 | 0.072 | 0.225 |
2 | 0.089 | 0.324 | 0.345 | 0.098 | 0.144 | |
3 | 0.066 | 0.163 | 0.442 | 0.127 | 0.202 | |
综合识别结果 | 0.091 | 0.357 | 0.455 | 0.070 | 0.027 |
1 | 王君, 高晓光. 空中目标敌我识别模型[J]. 火力与指挥控制, 2009, 34(6): 100-103, 107. |
WANG Jun, GAO Xiao-guang. Discussion on Air Target IFF Model[J]. Fire Control & Command Control, 2009, 34(6): 100-103, 107. | |
2 | 张志强, 钱建刚, 鲁瑞达. 一种空中目标敌我识别逻辑模型[J]. 雷达与对抗, 2013, 33(1): 9-11. |
ZHANG Zhi-qiang, QIAN Jian-gang, LU Rui-da. An IFF Logical Model for Air Targets[J]. RADAR & ECM, 2013, 33(1): 9-11. | |
3 | 崇元, 李加祥, 艾葳, 等. 融合战术与修正物理特征的空中目标战术类型识别[J]. 火力与指挥控制, 2016, 41(12): 150-154. |
CHONG Yuan, LI Jia-xiang, AI Wei, et al. Aerial Target Tactics Recognition Integrated with Targets Tactical and Amendatory Physics Characteristics[J]. Fire Control & Command Control, 2016, 41(12): 150-154. | |
4 | KHALEGHI B, KHAMIS A, KARRAY F O, et al. Multisensor Data Fusion: A Review of the State-of-the-Art[J]. Information Fusion, 2013, 14(1): 28-44. |
5 | 冯酉鹏. 空中目标识别与跟踪技术的研究[D]. 沈阳: 沈阳理工大学, 2020. |
FENG You-peng. Research on Aerial Target Recognition and Tracking Technology[D]. Shenyang: Shenyang Ligong University, 2020. | |
6 | 徐浩, 邢清华, 王伟. 基于DST-IFS的空中目标敌我属性综合识别[J]. 系统工程与电子技术, 2017, 39(8): 1757-1764. |
XU Hao, XING Qing-hua, WANG Wei. Integrated Air Target Identification of Friend or foe Based on DST-IFS[J]. Systems Engineering and Electronics, 2017, 39(8): 1757-1764. | |
7 | LEE S J, JEONG S J, YANG E J, et al. Target Identification Using Bistatic High-resolution Range Profiles[J]. IET Radar, Sonar and Navigation, 2017, 11(3): 498-504. |
8 | AKKARAT B, PONGSATHORN C, SANTANA B, et al. Simple Estimation of Late-time Response for Radar Target Identification[J]. Radio Science, 2017, 52(6): 743-756. |
9 | 李天琪, 张玉, 张进, 等. 基于时频与快速熵的IFF辐射源个体识别方法[J]. 探测与控制学报, 2020, 42(1): 87-93, 103. |
LI Tian-qi, ZHANG Yu, ZHANG Jin, et al. IFF Radiation Sources Individual Recognition Method Based on Time-frequency and Fast Entropy[J]. Journal of Detection & Control, 2020, 42(1): 87-93, 103. | |
10 | 冯程, 王犇, 满青珊. 美军战区空域管制发展研究[J]. 飞航导弹, 2015(7): 50-54, 70. |
FENG Cheng, WANG Ben, MAN Qing-shan. Research on the Development of Airspace Control in US Theater[J]. Aerodynamic Missile Journal, 2015(7): 50-54, 70. | |
11 | 杨艺. 美陆军战区空域指挥控制能力建设研究及启示[J]. 装备指挥技术学院学报, 2011, 22(2): 56-60. |
YANG Yi. Study on Capability Constructing of the US Army Airspace Command and Control in Combat Zone and Its Inspiration[J]. Journal of the Academy of Equipment Command & Technology, 2011, 22(2): 56-60. | |
12 | 方帆, 朱骁勇, 张钟铮. 美军陆战场空域管理体系研究[J]. 火力与指挥控制, 2017, 42(1): 170-173. |
FANG Fan, ZHU Xiao-yong, ZHANG Zhong-zheng. Research on Air Space Management System of US Land Battlefield[J]. Fire Control & Command Control, 2017, 42(1): 170-173. | |
13 | KILGORE J A. Airspace Coordination-who Needs it[R]. Carlisle Barracks, Pennsylvania: Army War Colloge, 1973. |
14 | Joint Staff USA. Joint Airspace Control: Joint Publication 3-52[M]. Washington D.C. : USA Joint Staff, 2014. |
15 | 知远战略与防务研究所. 美军战场空域控制[M]. 江阴: 知远战略与防务研究所, 2016. |
Knowfar Institute for Strategic and Defence Studies. U.S. Forces Battlefield Airspace Control[M]. Jiangyin: Knowfar Institute for Strategic and Defence Studies, 2016. | |
16 | Army, Crops Marine, Navy, Force Air. Multi-Service Tactics, Techniques, and Procedures for the Air-Ground System[M]. Washington D.C. : Air Land Sea Application Center, 2020. |
17 | Army, Crops Marine, Navy, Force Air. Multi-Service Tactics, Techniques, and Procedures for Integrated Combat Airspace Command and Control[M]. Washington D.C. : Air Land Sea Application Center, 2000. |
18 | 杨任农, 沈堤,戴江斌. 对联合作战空战场管控问题的思考[J]. 指挥信息系统与技术, 2019, 10(1): 1-6. |
YANG Ren-nong, SHEN Di, DAI Jiang-bin. Consideration for Management and Control Problems of Joint Operation Air Battlefield[J]. Command Information System and Technology, 2019, 10(1): 1-6. | |
19 | 杨艺, 柏代军. 陆战场空域指挥控制系统建设问题初探[J]. 装备学院学报, 2012, 23(3): 48-51. |
YANG Yi, BAI Dai-jun. Elementary Exploration on Construction of Land Battlefield Airspace Command and Control System[J]. Journal of Academy of Equipment, 2012, 23(3): 48-51. | |
20 | Army, Crops Marine, Navy, Force Air. Multi-Service Tactics, Techniques, and Procedures for Air Control Communication[M]. Washington D.C. : Air Land Sea Application Center, 2020. |
21 | Army U.S.. Airspace control: Field Manual 3-52[M]. Washington D.C. : Department of the Army, 2016. |
22 | 陈致远, 沈堤, 余付平, 等. 基于D-S证据理论的空中目标敌我识别研究综述[J]. 航空兵器, 2021, 28(3): 28-50. |
CHEN Zhi-yuan, SHEN Di, YU Fu-ping, et al. Review of Air Target Identification Friend or Foe Research Based on D-S Evidence Theory[J]. Aero Weaponry, 2021, 28(3): 28-50. | |
23 | Air Force U.S.. Air Force Manual 11-2 E-3 Volume 3[M]. Washington D.C. : U.S. Air Force, 2020. |
24 | Army, Crops Marine, Navy, Force Air. Multi-Service Tactics, Techniques, and Procedures for a Joint Integtated Air Ddfense System[M]. Washington D.C. : Air Land Sea Application Center, 2009. |
25 | Army, Crops Marine, Navy, Force Air. Multi-Service Tactics, Techniques, and Procedures for a Joint Integtated Air Ddfense System[M]. Washington D.C. : Air Land Sea Application Center, 2004. |
26 | Air Force U.S.. Airspace control: AFDD 3-52[M]. Washington D.C. : U.S. Air Force, 2011: 37-38. |
27 | Army, Force Air. Multi-Service Tactics, Techniques, and Procedures for Airspace Control[M]. Washington D.C. : Center for Doctrine and Education, 2009. |
28 | Army U.S.. Military Symbols: FM 1-02.2[M]. Washington D.C. : Headquarters Department of the Army, 2018. |
29 | Joint Staff USA. Close air support: joint publication 3-09.3[M]. Washington D.C. : USA Joint Staff, 2014. |
30 | Army U.S.. Aviation Tactical Employment: ATP 3-04.1[M]. Washington D.C. : Headquarters Department of the Army, 2016. |
31 | 朱昕. 基于雷达与IFF信息融合的敌我识别方法研究[D]. 成都: 电子科技大学, 2013. |
ZHU Xin. Study of Identification Friend or Foe Based on Information Fusion of Radar and IFF[D]. Chengdu: University of Electronic Science and Technology of China, 2013. | |
32 | 汪应洛. 系统工程[M]. 北京: 机械工业出版社, 2016. |
WANG Ying-luo. Systems Engineering[M]. Beijing: China Machine Press, 2016. | |
33 | 蒋雯, 邓鑫洋. D-S证据理论信息建模与应用[M]. 北京: 科学出版社, 2018. |
JIANG Wen, DENG Xin-yang. D-S Evidence Theory Information Modeling and Application[M]. Beijing: Science Press, 2018. | |
34 | 邢清华, 刘付显. 直觉模糊集隶属度与非隶属度函数的确定方法[J]. 控制与决策, 2009, 24(3):393-397. |
XING Qing-hua, LIU Fu-xian. Method of Determining Membership and Nonmembership Function in Intuitionistic Fuzzy Sets[J]. Control and Decision, 2009, 24(3): 393-397. | |
35 | 徐建平, 张立凡, 韩德强. 基于模糊推理的空中目标意图识别[J]. 指挥信息系统与技术, 2020, 11(3): 44-48. |
XU Jian-ping, ZHANG Li-fan, HAN De-qiang. Air Target Intention Recognition Based on Fuzzy Inference[J]. Command Information System and Technology, 2020, 11(3): 44-48. | |
36 | 常政, 项华春, 陈云翔, 等. 基于证据理论的直觉模糊群决策方法[J]. 火力与指挥控制, 2019, 44(8): 125-130. |
CHANG Zheng, XIANG Hua-chun, CHEN Yun-xiang, et al. Intuitionistic Fuzzy Group Decision-making Method Based on Evidence Theory[J]. Fire Control & Command Control, 2019, 44(8): 125-130. | |
37 | Army, Crops Marine, Navy, Force Air. Multi-Service Tactics, Techniques, and Procedures for a Joint Integtated Air Ddfense System[M]. Washington D.C. : Air Land Sea Application Center, 2001. |
38 | 黄山良, 卜卿, 梅发国, 等. 防空探测预警系统与技术[M]. 北京: 国防工业出版社, 2015. |
HUANG Shan-liang, PU Qing, MEI Fa-guo, et al. Air Defense Detection and Early Warning System and Technology[M]. Beijing: National Defense Industry Press, 2015. | |
39 | 雷英杰, 赵杰, 路艳丽, 等. 直觉模糊集理论及应用[M]. 北京: 科学出版社, 2014. |
LEI Ying-jie, ZHAO Jie, LU Yan-li, et al. Intuitionistic Fuzzy Set Theory and Application[M]. Beijing: Science Press, 2014: 322-323. | |
40 | 雷阳, 雷英杰, 冯有前, 等. 基于直觉模糊推理的目标识别方法[J]. 控制与决策, 2011, 26(8):1163-1168, 1174. |
LEI Yang, LEI Ying-jie, FENG You-qian, et al. Techniques for Target Recognition Based on Intuitionistic Fuzzy Reasoning[J]. Control and Decision, 2011, 26(8): 1163-1168, 1174. | |
41 | JOUSSELME A L, GRENIER D, BOSSE E. A New Distance Between two Bodies of Evidence[J]. Information Fusion, 2001, 2(1): 91-101. |
42 | 吴文华, 宋亚飞, 刘晶. 直觉模糊框架内的证据动态可靠性评估及应用[J]. 计算机科学, 2018, 45(12): 160-165, 176. |
WU Wen-hua, SONG Ya-fei, LIU Jing. Dynamic Reliability Evaluation Method of Evidence Based on Intuitionistic Fuzzy Sets and Its Applications[J]. Computer Science, 2018, 45(12): 160-165, 176. | |
43 | 陈云翔, 蔡忠义, 张诤敏, 等. 基于证据理论和直觉模糊集的群决策信息集结方法[J]. 系统工程与电子技术, 2015, 37(3): 594-598. |
CHEN Yun-xiang, CAI Zhong-yi, ZHANG Zheng-min, et al. Method for Group Decision-Making Information Intergration Based on Evidence Theory and Intuitionistic Fuzzy Set[J]. Systems Engineering and Electronics, 2015, 37(3): 594-598. | |
44 | SONG Y F, FU Q, WANG Y F, et al. Divergence-based Cross Entropy and Uncertainty Measures of Atanassov’s Intuitionistic Fuzzy Sets with Their Application in Decision Making[J]. Applied Soft Computing Journal, 2019, 84: 105703. |
45 | DENG Y. Deng Entropy[J]. Chaos, Solitons & Fractals, 2016, 91: 549-553. |
[1] | 李喆, 童逸琦, 夏文博, 应宇欣. 一种多源集中式空中目标类型综合识别方法[J]. 现代防御技术, 2023, 51(4): 53-62. |
[2] | 陈黎, 李芳芳, 邹长虹. 基于动态贝叶斯网络和模板匹配的空中目标意图识别[J]. 现代防御技术, 2023, 51(2): 62-70. |
[3] | 宋宝军, 冯卉. 基于Vague集加权距离的空中目标类型判别方法[J]. 现代防御技术, 2020, 48(4): 29-33. |
[4] | 梁复台, 李宏权, 孟庆文, 蔡莉. 一种空中目标航迹聚类方法研究[J]. 现代防御技术, 2020, 48(1): 19-25. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1411
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 3773
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||