现代防御技术 ›› 2024, Vol. 52 ›› Issue (1): 83-91.DOI: 10.3969/j.issn.1009-086x.2024.01.011
师俞晨()
收稿日期:
2022-12-17
修回日期:
2023-05-15
出版日期:
2024-02-28
发布日期:
2024-02-21
通讯作者:
师俞晨
作者简介:
师俞晨(1996-),女,北京人。工程师,硕士,研究方向为遥感目标检测。
基金资助:
Received:
2022-12-17
Revised:
2023-05-15
Online:
2024-02-28
Published:
2024-02-21
Contact:
Yuchen SHI
摘要:
水下目标识别技术在现代战争中发挥着重要的作用。随着遥感技术的发展,通过遥感手段检测尾迹识别水下目标是重点研究方向之一。简要介绍了水动力学尾迹和热尾迹,并且根据遥感影像分类讨论,分析了光学影像、合成孔径雷达(SAR)影像、热红外影像尾迹识别技术的特点和算法,提出未来发展初步构想,梳理总结了应关注的重点技术方向,为水下目标探测发展提供参考。
中图分类号:
师俞晨. 基于遥感影像水下目标尾迹探测综述[J]. 现代防御技术, 2024, 52(1): 83-91.
Yuchen SHI. Review of Underwater Target Wake Detection in Remote Sensing[J]. Modern Defense Technology, 2024, 52(1): 83-91.
动网格法 | 来流法 | |
---|---|---|
模拟 场景 | 水体速度与目标速度相同,方向相反,保持相对静止 | 目标静止,水体以一定速度流动 |
优点 | 能够真实反应热量浮升过程,模拟精度高 | 计算量小,操作简单 |
缺点 | 未考虑气液交界对热尾流水面特征的影响 | 难以实现尾流结构的精细模拟 |
典型 算法 | 动态分层法、局部网格重构法 | Les-Smagorinsky-Lilly,k-ω |
表1 热红外尾迹模拟算法对比
Table 1 Comparison of thermal wake simulation algorithms
动网格法 | 来流法 | |
---|---|---|
模拟 场景 | 水体速度与目标速度相同,方向相反,保持相对静止 | 目标静止,水体以一定速度流动 |
优点 | 能够真实反应热量浮升过程,模拟精度高 | 计算量小,操作简单 |
缺点 | 未考虑气液交界对热尾流水面特征的影响 | 难以实现尾流结构的精细模拟 |
典型 算法 | 动态分层法、局部网格重构法 | Les-Smagorinsky-Lilly,k-ω |
1 | 武立军, 胡鉴航, 王旭, 等. 深海安全问题的认识思考[J]. 现代防御技术, 2021, 49(1): 27-31. |
WU Lijun, HU Jianhang, WANG Xu, et al. Understanding and Thinking about Security Issues of Deep Sea[J]. Modern Defence Technology, 2021, 49(1): 27-31. | |
2 | 李杰, 毛启明, 崔国平. 水下精确制导武器对抗技术发展现状与趋势[J]. 现代防御技术, 2018, 46(4): 73-78, 138. |
LI Jie, MAO Qiming, CUI Guoping. Status Quo and Development Trend of Countermeasure Technology for Underwater Precision Guided Weapon[J]. Modern Defence Technology, 2018, 46(4): 73-78, 138. | |
3 | 章期文. 水下航行体尾流场水动力学特征分析与利用[D]. 上海: 上海交通大学, 2020. |
ZHANG Qiwen. Analysis and Application of Hydrodynamic Characteristics of Wake Field of Underwater Vehicle[D]. Shanghai: Shanghai Jiaotong University, 2020. | |
4 | XUE Fuduo, JIN Weiqi, QIU Su, et al. Wake Features of Moving Submerged Bodies and Motion State Inversion of Submarines[J]. IEEE Access, 2020, 8: 12713-12724. |
5 | BONNIER M, EIFF O. Experimental Investigation of the Collapse of a Turbulent Wake in a Stably Stratified Fluid[J]. Physics of Fluids, 2002, 14(2): 791-801. |
6 | WANG B. Kelvin Waves[M]. HOLTON J R. Encycloped of Atmospheric Sciences. Oxford: Academic Press, 2003:1062-1068. |
7 | SHUGAN I V, LEE K J, SUN A J. Kelvin Wake in the Presence of Surface Waves[J]. Physics Letters A, 2006, 357(3): 232-235. |
8 | OUMANSOUR K, WANG Y, SAILLARD J. Multifrequency SAR Observation of a Ship Wake[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(4): 275-280. |
9 | DALY D G. A Limited Analysis of Some Nonacoustic Antisubmarine Warfare Systems[EB/OL]. (1994-03-01)[2022-2-24]. . |
10 | 吴明眼. 伯努利方程原理及其应用[J]. 信息记录材料, 2018, 19(9): 115-117. |
WU Mingyan. Bernoulli's Equation Principle and Applications[J]. Information Recording Materials, 2018, 19(9): 115-117. | |
11 | 李高华, 王福新. 高雷诺数双螺旋涡尾迹演化特性分析[J]. 物理学报, 2018, 67(5): 190-206. |
LI Gaohua, WANG Fuxin. Evolution Characteristic Analysis of Double-Helical Vortex Wake of High Reynolds Number Flow[J]. Acta Physica Sinica, 2018, 67(5): 190-206. | |
12 | OUCHI K, STAPLETON N R, BARBER B C. Multi-frequency SAR Images of Ship-Generated Internal Waves[J]. International Journal of Remote Sensing, 1997, 18(18): 3709-3718. |
13 | MEUNIER P, LE DIZÈS S, REDEKOPP L, et al. Internal Waves Generated by a Stratified Wake: Experiment and Theory[J]. Journal of Fluid Mechanics, 2018, 846: 752-788. |
14 | 梁建军, 杜涛, 黄韦艮, 等. 水下运动物体产生内波的研究进展[J]. 船舶力学, 2016, 20(5): 635-646. |
LIANG Jianjun, DU Tao, HUANG Weigen, et al. Study Progress on the Internal Waves Generated by Submerged Moving Bodies[J]. Journal of Ship Mechanics, 2016, 20(5): 635-646. | |
15 | 李岩, 吴雨薇, 何红艳. 基于“高分五号”卫星红外影像的舰船尾迹特征分析[J]. 航天返回与遥感, 2020, 41(5): 102-109. |
LI Yan, WU Yuwei, HE Hongyan. The Ship Wake Characterization Study Based on GF-5 Infrared Images[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(5): 102-109. | |
16 | 郜键. 条纹管激光成像雷达海面小尺度波探测探潜技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
GAO Jian. Research on Detection of Submarine through Short Scale Ocean Waves Using a Streak Tube Imaging Lidar[D]. Harbin: Harbin Institute of Technology, 2014. | |
17 | 金亮. 基于热尾迹红外特性探测水下航行器的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
JIN Liang. Research on Detection of Underwater Vehicle Based on Infrared Characteristics of Hot Wake[D]. Harbin: Harbin Institute of Technology, 2019. | |
18 | 师于杰, 任海刚. 国外非声探潜与隐身技术发展趋势[J]. 舰船电子工程, 2015, 35(1): 5-9. |
SHI Yujie, REN Haigang. Trends of Foreign Non-Acoustics Exploration Potential and Stealth Technology[J]. Ship Electronic Engineering, 2015, 35(1): 5-9. | |
19 | 吴猛猛, 陈伯义, 杨立. 水下运动体尾流水面特征的研究进展与应用[J]. 红外技术, 2009, 31(11): 639-645, 653. |
WU Mengmeng, CHEN Boyi, YANG Li. The Study Progress and Application on the Surface Features of Wake Behind a Going Body Underwater[J]. Infrared Technology, 2009, 31(11): 639-645, 653. | |
20 | 张晓怀, 陈翾, 杨立. 潜艇热尾流红外特征分析与计算[J]. 激光与红外, 2007, 37(10): 1054-1057. |
ZHANG Xiaohuai, CHEN Xuan, YANG Li. The Analysis and Calculation of Infrared Signature of Thermal Wake of Submarines[J]. Laser & Infrared, 2007, 37(10): 1054-1057. | |
21 | 张亮. 机载蓝绿激光雷达水深信息获取与处理方法[D]. 大连: 大连海事大学, 2016. |
ZHANG Liang. The Air-born Blue-Green Laser Radar for Water Depth Information Acquisition and Processing Methods Research[D]. Dalian: Dalian Maritime University, 2016. | |
22 | 寻丽娜, 方勇华. 独立分量分析在高光谱图像舰船检测中的应用[J]. 计算机仿真, 2008, 25(9): 196-197, 299. |
XUN Lina, FANG Yonghua. Application of Independent Component Analysis to Sea Fleet Detection in Hyperspectral Images[J]. Computer Simulation, 2008, 25(9): 196-197, 299. | |
23 | 成媛媛. 基于无人机高光谱图像的舰船尾迹检测方法研究及应用[D]. 大连: 大连海事大学, 2020. |
CHENG Yuanyuan. Research and Application of Ship Wake Detection Method Based on UAV Hyperspectral Image[D]. Dalian: Dalian Maritime University, 2020. | |
24 | 吴恒泽, 王大成, 金伟其, 等. 基于水面特征波纹的潜艇多波段光电偏振成像探测性仿真研究[J]. 红外与激光工程, 2020, 49(6): 46-55. |
WU Hengze, WANG Dacheng, JIN Weiqi, et al. Multiband Submarine Photoelectric Polarization Imaging Detection Simulation Study Based on Water Surface Characteristics Ripple[J]. Infrared and Laser Engineering, 2020, 49(6): 46-55. | |
25 | 刘涛, 杨子渊, 蒋燕妮, 等. 极化SAR图像舰船目标检测研究综述[J]. 雷达学报, 2021, 10(1): 1-19. |
LIU Tao, YANG Ziyuan, JIANG Yanni, et al. Review of Ship Detection in Polarimetric Synthetic Aperture Imagery[J]. Journal of Radars, 2021, 10(1): 1-19. | |
26 | 杨俊, 于斐, 徐源, 等. 国外反潜探测装备与技术发展评述[J]. 舰船科学技术, 2021, 43(增1): 132-137. |
YANG Jun, YU Fei, XU Yuan, et al. Review on the Development of Foreign Anti-submarine Detection Equipment and Technology[J]. Ship Science and Technology, 2021, 43(S1): 132-137. | |
27 | 周学军. Radon算法在合成孔径雷达图像舰船尾迹检测中的应用[J]. 舰船科学技术, 2021, 43(10): 67-69. |
ZHOU Xuejun. Application of Radon Algorithm in Ship Wake Detection in Synthetic Aperture Radar Image[J]. Ship Science and Technology, 2021, 43(10): 67-69. | |
28 | 孙宏亮. 基于深度学习的星载SAR南海海洋内波自动识别研究[D]. 桂林: 桂林理工大学, 2021. |
SUN Hongliang. Deep Learning-Based Ocean Internal Waves Detection from SAR Images in South China Sea[D]. Guilin: Guilin University of Technology, 2021. | |
29 | 高健康. 多尺度特征融合的SAR图像舰船无锚框检测研究[D]. 阜阳: 辽宁工程技术大学, 2021. |
GAO Jiankang. Study on the Anchor-Free Method of SAR Image Ship Detection Based on Multi-scale Feature Fusion[D]. Fuyang: Liaoning Technical University, 2021. | |
30 | BIONDI F. A Polarimetric Extension of Low-Rank Plus Sparse Decomposition and Radon Transform for Ship Wake Detection in Synthetic Aperture Radar Images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 75-79. |
31 | 王志鹤, 行坤, 崔宁, 等. 一种基于Radon变换和尾迹模型的尾迹检测算法[J]. 电子设计工程, 2022, 30(12): 1-6. |
WANG Zhihe, XING Kun, CUI Ning, et al. A Wake Detection Algorithm Based on Radon Transform and Wake Model[J]. Electronic Design Engineering, 2022, 30(12): 1-6. | |
32 | KARAKUŞ O, ACHIM A. Ship Wake Detection in X-band SAR Images Using Sparse GMC Regularization[C]∥ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ, USA: IEEE, 2019: 2182-2186. |
33 | GUI Junfeng, GAO Wensheng, TAN Kexiong, et al. Deformation Analysis of Transformer Winding by Structure Parameter[C]∥Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials. Piscataway, NJ, USA: IEEE, 2003: 487-490. |
34 | 吕俊阳, 李焘, 彭冬亮. 基于SAR图像的水下运动目标探测方法[J]. 杭州电子科技大学学报(自然科学版), 2022, 42(2): 34-40. |
Junyang LÜ, LI Dao, PENG Dongliang. Detection Method of Underwater Moving Target Based on SAR Image Surface Characteristic Ripple[J]. Journal of Hangzhou Dianzi University(Natural Sciences), 2022, 42(2): 34-40. | |
35 | 巩彪, 王海涛, 席沛丽, 等. 基于改进Hough变换的ASAR图像船只尾迹检测算法研究[J]. 上海航天, 2016, 33(6): 82-87. |
GONG Biao, WANG Haitao, XI Peili, et al. Study on Ship Wake Identification Algorithm for ASAR Image Based on Improved Hough Transform[J]. Aerospace Shanghai, 2016, 33(6): 82-87. | |
36 | 王连亮, 陈怀新. 基于递归修正Hough变换域的舰船多尾迹检测方法[J]. 系统工程与电子技术, 2009, 31(4): 834-837. |
WANG Lianliang, CHEN Huaixin. Multi-Ship Wakes Detection Method Based on Recursive Modified Hough Transform Field[J]. Systems Engineering and Electronics, 2009, 31(4): 834-837. | |
37 | MENG Siqi, REN Kan, LU Dongming, et al. A Novel Ship CFAR Detection Algorithm Based on Adaptive Parameter Enhancement and Wake-Aided Detection in SAR Images[J]. Infrared Physics & Technology, 2018, 89: 263-270. |
38 | WANG Chengkai, WANG Junfeng, LIU Xingzhao. A Novel Algorithm for Ship Detection in SAR Images[C]∥2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Piscataway, NJ, USA: IEEE, 2019: 1-5. |
39 | 王伟. 基于遥感图像的船舶目标检测方法综述[J]. 电讯技术, 2020, 60(9): 1126-1132. |
WANG Wei. Overview of Ship Detection Technology Based on Remote Sensing Images[J]. Telecommunication Engineering, 2020, 60(9): 1126-1132. | |
40 | 张昊春, 吉宇, 马锐, 等. 水下航行体热尾流浮升特性研究[J]. 舰船科学技术, 2015, 37(7): 24-28. |
ZHANG Haochun, JI Yu, MA Rui, et al. Buoyant Characteristics of Thermal Wakes Discharged by Underwater Vehicles[J]. Ship Science and Technology, 2015, 37(7): 24-28. | |
41 | 周哲, 白宗良, 史径丞, 等. 基于温度插值技术的潜艇热尾流浮升规律及海面热特征仿真方法研究[J]. 红外技术, 2019, 41(11): 1039-1046. |
ZHOU Zhe, BAI Zongliang, SHI Jingcheng, et al. The Study on the Simulation Method Based on Temperature Interpolation Technology for the Buoyancy Law and Ocean-Surface Thermal Characteristic of Submarine Wake[J]. Infrared Technology, 2019, 41(11): 1039-1046. | |
42 | 王平, 杜永成, 杨立, 等. 基于重叠网格技术和VOF模型的潜艇热尾流浮升扩散规律的数值与实验研究[J]. 红外与激光工程, 2019, 48(4): 38-46. |
WANG Ping, DU Yongcheng, YANG Li, et al. Numerical and Experimental Study on the Buoyancy and Diffusion laws of Submarine Thermal Wake Based on Overset Grid Technology and VOF Model[J]. Infrared and Laser Engineering, 2019, 48(4): 38-46. | |
43 | 刘洋, 朱飞定, 谭佩钰, 等. 潜艇水动力尾迹与热尾迹耦合作用的数值模拟[J]. 红外技术, 2018, 40(1): 62-67. |
LIU Yang, ZHU Feiding, TAN Peiyu, et al. Numerical Simulation of the Coupling Effect of Submarine Hydrodynamic Wake and Thermal Trail[J]. Infrared Technology, 2018, 40(1): 62-67. | |
44 | 来庆志, 王成安, 谭建宇, 等. 基于三维动网格技术的潜艇热尾流浮升规律及水面温度特征研究[J]. 舰船科学技术, 2018, 40(5): 8-13. |
LAI Qingzhi, WANG Chengan, TAN Jianyu, et al. Study of Buoyancy Trajectory of Thermal Wake and Temperature Characteristics on Sea Surface Based on 3-D Dynamic Meshing Technique[J]. Ship Science and Technology, 2018, 40(5): 8-13. | |
45 | 吴霆锋, 杜永成, 杨立, 等. 基于重叠网格技术的潜艇热尾流在正负温度分层环境下的数值仿真[J]. 舰船科学技术, 2022, 44(7): 37-42. |
WU Tingfeng, DU Yongcheng, YANG Li, et al. Numerical Simulation of Submarine Thermal Wake in Positive and Negative Temperature Stratified Fluid Based on Overset Grid Technology[J]. Ship Science and Technology, 2022, 44(7): 37-42. | |
46 | 程志远, 李黎, 龙晓鸿, 等. 移动网格技术在计算流体动力学数值仿真中的应用[J]. 重庆大学学报, 2013, 36(2): 96-101. |
CHENG Zhiyuan, LI Li, LONG Xiaohong, et al. Research on the Application of Moving Mesh Technology in Computational Fluid Dynamics Simulation[J]. Journal of Chongqing University, 2013, 36(2): 96-101. | |
47 | 王平, 杜永成, 柳文林, 等. 基于动网格与来流法的潜艇热尾流浮升扩散规律对比研究[J]. 工程热物理学报, 2020, 41(10): 2589-2595. |
WANG Ping, DU Yongcheng, LIU Wenlin, et al. A Comparative Study on Levitation and Diffusion Law of Submarine Thermal Wake Based on Dynamic Mesh and Inflow Method[J]. Journal of Engineering Thermophysics, 2020, 41(10): 2589-2595. | |
48 | VOROPAYEV S I, NATH C, FERNANDO H J S. Thermal Surface Signatures of Ship Propeller Wakes in Stratified Waters[J]. Physics of Fluids, 2012, 24(11): 116603. |
49 | PELTZER R, GARRETT W, SMITH P. A Remote Sensing Study of a Surface Ship Wake[C]∥OCEANS '85-Ocean Engineering and the Environment. Piscataway, NJ, USA: IEEE, 1985: 277-286. |
50 | JOGEE S, ANUPINDI K. Near-Wake Flow and Thermal Characteristics of Three Side-by-Side Circular Cylinders for Large Temperature Differences Using Large-Eddy Simulation[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122324. |
[1] | 康梦雪, 张金鹏, 马喆, 黄旭辉, 刘雅婷, 宋子壮. 基于高级语义特征蒸馏的增量式连续目标检测方法[J]. 现代防御技术, 2024, 52(1): 41-48. |
[2] | 李洋, 梁潇, 贾海萨. 基于知识蒸馏的SAR图像舰船目标检测[J]. 现代防御技术, 2023, 51(4): 78-85. |
[3] | 何明, 朱梓涵, 翟绪龙, 翟政, 郝程鹏. 基于多分支上下文融合的空对地目标检测算法[J]. 现代防御技术, 2023, 51(3): 91-98. |
[4] | 张进, 徐国亮, 郭浩. 人工智能技术在国外舰载武器系统中的应用浅析[J]. 现代防御技术, 2023, 51(1): 42-49. |
[5] | 岳磊, 袁建虎, 杨柳, 吕婷婷. 一种巡逻执勤目标检测算法研究[J]. 现代防御技术, 2023, 51(1): 67-74. |
[6] | 代妍, 刘丹, 胡庆荣, 陈成增, 王悦循. 一种针对雷达回波分裂的相位补偿处理方法[J]. 现代防御技术, 2022, 50(3): 84-89. |
[7] | 刘海涵, 吕卫祥. 基于时间反转变换的动目标相参积累算法[J]. 现代防御技术, 2022, 50(2): 67-75. |
[8] | 刘克, 潘广煜, 郑大国, 顾佼佼, 孟春英. 一种RetinaNet与SE融合的航空取证目标检测算法[J]. 现代防御技术, 2022, 50(1): 25-32. |
[9] | 李潇飞, 唐意东. 基于先验稀疏模型的光谱图像压缩采样检测[J]. 现代防御技术, 2021, 49(3): 115-122. |
[10] | 王文庆, 庞颖, 刘洋, 杨东方, 张萌. 双重注意机制的空对地目标智能检测算法[J]. 现代防御技术, 2020, 48(6): 81-88. |
[11] | 王志虎, 沈小青, 桂伟龙. 光学成像小目标检测技术综述[J]. 现代防御技术, 2020, 48(5): 67-73. |
[12] | 陈睿容, 孙武, 贾学振, 徐秋锋. 基于二阶Keystone的空间目标检测方法[J]. 现代防御技术, 2020, 48(4): 93-101. |
[13] | 刘标, 许腾, 刘树锋. 水下目标识别的规划融合算法[J]. 现代防御技术, 2018, 46(6): 64-67. |
[14] | 林菡, 李昌玺, 陈丽娟. MIMO-FNN模型的弹道导弹目标识别方法[J]. 现代防御技术, 2018, 46(6): 36-43. |
[15] | 于小红, 程嘉远. 改进模板匹配的通信目标识别技术收[J]. 现代防御技术, 2018, 46(5): 69-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||