| [1] |
GRANT R. The Bekaa Valley War[J]. Air Force Magazine, 2002, 85(6): 58-63.
|
| [2] |
SCHARRE P. How Swarming Will Change Warfare[J]. Bulletin of the Atomic Scientists, 2018, 74(6): 385-389.
|
| [3] |
于威, 侯学隆. 从纳卡冲突看无人机作战运用[J]. 舰船电子工程, 2022, 42(10): 8-12.
|
|
YU Wei, HOU Xuelong. Application of Unmanned Aerial Vehicles in Nagorno-Karabakh Conflict[J]. Ship Electronic Engineering, 2022, 42(10): 8-12.
|
| [4] |
PATIL K. Drone Warfare: History, Evolution and Future[J]. Journal of Defence Studies, 2022, 16(4): 243-251.
|
| [5] |
张阳. 纳卡冲突中无人机攻防装备运用及典型作战场景分析[J]. 指挥控制与仿真, 2022, 44(5): 31-37.
|
|
ZHANG Yang. Analysis of the Application of UAV Attack and Defense Equipment and Typical Operational Scenarios in the Nagorno-Karabakh Conflict[J]. Command Control & Simulation, 2022, 44(5): 31-37.
|
| [6] |
吴静, 蔡海锋, 刘俊良. 纳卡地区冲突无人机攻防运用分析及地空反无人对策建议[J]. 现代防御技术, 2021, 49(3): 13-20.
|
|
WU Jing, CAI Haifeng, LIU Junliang. Analysis on the Operation of Attack and Defense of UAVs in Naka Conflict and Suggestions for Ground-to-Air Anti-UAVs[J]. Modern Defence Technology, 2021, 49(3): 13-20.
|
| [7] |
缪炜星, 罗银, 顾嘉琪, 等. 俄乌冲突中无人机ISR的运用及启示[J]. 无线电工程, 2023, 53(7): 1693-1699.
|
|
MIAO Weixing, LUO Yin, GU Jiaqi, et al. Application and Enlightenment of UAV ISR in the Russia-Ukraine Conflict[J]. Radio Engineering, 2023, 53(7): 1693-1699.
|
| [8] |
杨佳会, 朱超磊, 许佳. 俄乌冲突中的无人机运用[J]. 战术导弹技术, 2022(3): 116-123.
|
|
YANG Jiahui, ZHU Chaolei, XU Jia. Analysis of UAV Deployment in Russia-Ukraine Conflict[J]. Tactical Missile Technology, 2022(3): 116-123.
|
| [9] |
崔勇平, 邢清华. 从俄乌战争看无人机对野战防空的挑战和启示[J]. 航天电子对抗, 2022, 38(4): 1-3.
|
|
CUI Yongping, XING Qinghua. The Challenge and Inspiration of UAVs to Field Air Defense from the Russia-Ukraine War[J]. Aerospace Electronic Warfare, 2022, 38(4): 1-3.
|
| [10] |
陈士涛, 李大喜, 孙鹏, 等. 美军智能无人机集群作战样式及影响分析[J]. 中国电子科学研究院学报, 2021, 16(11): 1113-1118.
|
|
CHEN Shitao, LI Daxi, SUN Peng, et al. Analysis on the Development and Influence of Intelligent Unmanned Aerial Vehicle Cluster in U.S. Army[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(11): 1113-1118.
|
| [11] |
董宇, 高敏, 张悦, 等. 美军蜂群无人机研究进展及发展趋势[J]. 飞航导弹, 2020(9): 37-42.
|
|
DONG Yu, GAO Min, ZHANG Yue, et al. Research Progress and Development Trend of Swarm Drones in the US Military[J]. Aerodynamic Missile Journal, 2020(9): 37-42.
|
| [12] |
JOHNSON J. Artificial Intelligence, Drone Swarming and Escalation Risks in Future Warfare[J]. The RUSI Journal, 2020, 165(2): 26-36.
|
| [13] |
黄雷. 美军小精灵无人机群项目发展现状综述[J]. 飞航导弹, 2018(7): 44-47.
|
|
HUANG Lei. Overview of the Current Development Status of the US Military's Gremlins Drone Swarm Project[J]. Aerodynamic Missile Journal, 2018(7): 44-47.
|
| [14] |
王彤, 李磊, 蒋琪. “进攻性蜂群使能战术”项目推进无人蜂群能力发展分析[J]. 战术导弹技术, 2020(1): 33-38, 56.
|
|
WANG Tong, LI Lei, JIANG Qi. OFFensive Swarm-Enabled Tactics Program Promotes the Development of Unmanned Swarm Capability[J]. Tactical Missile Technology, 2020(1): 33-38, 56.
|
| [15] |
王瑞杰, 王得朝, 丰璐, 等. 国外无人机蜂群作战样式进展及反蜂群策略研究[J]. 现代防御技术, 2023, 51(4): 1-9.
|
|
WANG Ruijie, WANG Dechao, FENG Lu, et al. Research Progress and Countermeasures Against UAV Swarm Operations Abroad[J]. Modern Defence Technology, 2023, 51(4): 1-9.
|
| [16] |
董康生, 胡伟波, 沈雁鸣, 等. 美军无人空战装备智能化发展动态及启示[J]. 现代防御技术, 2022, 50(4): 28-37.
|
|
DONG Kangsheng, HU Weibo, SHEN Yanming, et al. Development and Implications of Intelligent Unmanned Combat Aerial Equipment by the US Army[J]. Modern Defence Technology, 2022, 50(4): 28-37.
|
| [17] |
GUITTON M J. Fighting the Locusts: Implementing Military Countermeasures Against Drones and Drone Swarms[J]. Scandinavian Journal of Military Studies, 2021, 4(1): 26-36.
|
| [18] |
宋怡然, 申超, 李东兵. 美国分布式低成本无人机集群研究进展[J]. 飞航导弹, 2016(8): 17-22.
|
|
SONG Yiran, SHEN Chao, LI Dongbing. Research Progress on the Distributed Low-Cost Drone Clusters of US[J]. Aerodynamic Missile Journal, 2016(8): 17-22.
|
| [19] |
刘箴, 吴馨远, 许洁心. 国外巡飞弹发展现状及趋势分析[J]. 弹箭与制导学报, 2024, 44(2): 42-50.
|
|
LIU Zhen, WU Xinyuan, XU Jiexin. Development Status and Trend for Foreign Typical Loitering Munitions[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2024, 44(2): 42-50.
|
| [20] |
杨丽娜, 曹泽阳, 李勇祥. 无人机蜂群作战构成及作战概念研究[J]. 现代防御技术, 2020, 48(4): 44-51.
|
|
YANG Lina, CAO Zeyang, LI Yongxiang. Research on the Operational Structure and Concept of Unmanned Aerial Swarm[J]. Modern Defence Technology, 2020, 48(4): 44-51.
|
| [21] |
韩月明, 方丹, 张红艳, 等. 无人机集群典型作战运用样式及关键技术分析[J]. 飞航导弹, 2020(9): 43-47.
|
|
HAN Yueming, FANG Dan, ZHANG Hongyan, et al. Analysis of Typical Combat Application Styles and Key Technologies of Unmanned Aerial Vehicle Clusters[J]. Aerodynamic Missile Journal, 2020(9): 43-47.
|
| [22] |
刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(增1): 4-20.
|
|
LIU Lei, LIU Dawei, WANG Xiaoguang, et al. Development Status and Outlook of UAV Clusters and anti-UAV Clusters[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 4-20.
|
| [23] |
韦宸越, 何明, 韩伟, 等. 无人机集群弹性评估及重构技术研究[J]. 计算机工程与应用, 2024, 60(15): 1-10.
|
|
WEI Chenyue, HE Ming, HAN Wei, et al. Research on Unmanned Aerial Vehicle Swarm Resilience Assessment and Reconfiguration Technology[J]. Computer Engineering and Applications, 2024, 60(15): 1-10.
|
| [24] |
曾梦岐, 范晓霞, 陈劲尧. 无人机群网络安全问题研究[J]. 通信技术, 2022, 55(5): 646-651.
|
|
ZENG Mengqi, FAN Xiaoxia, CHEN Jinyao. Research on Cyber Security of a Swarm of Unmanned Aerial Vehicles[J]. Communications Technology, 2022, 55(5): 646-651.
|
| [25] |
焦士俊, 刘剑豪, 王冰切, 等. 反无人机蜂群战法运用研究[J]. 飞航导弹, 2019(8): 39-42.
|
|
JIAO Shijun, LIU Jianhao, WANG Bingqie, et al. Research on the Application of Anti Drone-Swarm Warfare Methods[J]. Aerodynamic Missile Journal, 2019(8): 39-42.
|
| [26] |
王海涛, 吴连才, 武媛媛. 无线自组网的安全问题综述[J]. 桂林电子科技大学学报, 2011, 31(2): 87-92.
|
|
WANG Haitao, WU Liancai, WU Yuanyuan. Survey on Security Issues in Wireless Self-Organizing Network[J]. Journal of Guilin University of Electronic Technology, 2011, 31(2): 87-92.
|
| [27] |
杨丽娜, 曹泽阳, 韩耀锋. 高功率微波反无人机蜂群系统能力需求分析[J]. 军事运筹与系统工程, 2020, 34(2): 26-32.
|
|
YANG Lina, CAO Zeyang, HAN Yaofeng. Capability Requirement Analysis of High Power Microwave Anti-UAV Swarms System[J]. Military Operations Research and Systems Engineering, 2020, 34(2): 26-32.
|