| [1] |
常海昕, 刘靖, 常海艳, 等. 国外便携式反坦克导弹的现状与发展趋势研究[J]. 飞航导弹, 2019(9): 25-29.
|
|
CHANG Haixin, LIU Jing, CHANG Haiyan, et al. Research on the Current Situation and Development Trend of Foreign Protable Anti-tan Missiles[J]. Aerodynamic Missile Journal, 2019(9): 25-29.
|
| [2] |
刘沛清, 唐文烜, 胡天翔. 鸭式布局大迎角大振幅俯仰动态气动特性机理研究进展[J]. 气动研究与试验, 2024, 2(3): 1-18.
|
|
LIU Peiqing, TANG Wenxuan, HU Tianxiang. Investigation on the Dynamic Aerodynamic Characteristics Mechanism of Canard Configurations Pitching at High Angle of Attack with Large Amplitude[J]. Aerodynamic Research & Experiment, 2024, 2(3): 1-18.
|
| [3] |
张夏阳, 罗彬, 招启军, 等. 倾转四旋翼机多涡系气动干扰非定常特性[J]. 航空动力学报, 2025, 40(7): 321-334.
|
|
ZHANG Xiayang, LUO Bin, ZHAO Qijun, et al. Unsteady Aerodynamic Interference of Tilt-Quadrotor Due to Multi-vortex Effect[J]. Journal of Aerospace Power, 2025, 40(7): 321-334.
|
| [4] |
何建东, 雷娟棉. 基于伴随方法的动态非定常气动外形优化设计[J]. 北京理工大学学报, 2015, 35(2): 127-132.
|
|
HE Jiandong, LEI Juanmian. Aerodynamic Shape Optimization for Dynamic Unsteady Flows Based on Adjoint Method[J]. Transactions of Beijing Institute of Technology, 2015, 35(2): 127-132.
|
| [5] |
郭东, 徐敏, 陈士橹. 基于网格速度法的非定常流场模拟和动导数计算[J]. 西北工业大学学报, 2012, 30(5): 784-788.
|
|
GUO Dong, XU Min, CHEN Shilu. An Effective Computation Method Based on Field Velocity Approach for Unsteady Flow Simulation and Obtaining Dynamic Derivatives[J]. Journal of Northwestern Polytechnical University, 2012, 30(5): 784-788.
|
| [6] |
雷娟棉, 吴甲生. 多片弹翼反坦克导弹气动特性实验研究[J]. 兵工学报, 2005, 26(5): 709-711.
|
|
LEI Juanmian, WU Jiasheng. An Experiment Investigation of the Aerodynamic Characteristic for a Multi-wing Light Antitank Missile[J]. Acta Armamentarii, 2005, 26(5): 709-711.
|
| [7] |
石磊, 杨云军, 周伟江. 两种湍流模型在高速旋转翼身组合弹箭中的对比研究[J]. 力学学报, 2017, 49(1): 84-92.
|
|
SHI Lei, YANG Yunjun, ZHOU Weijiang. A Comparative Study of Two Turbulence Models for Magnus Effect in Spinning Projectile[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 84-92.
|
| [8] |
陈必露, 刘春生, 袁斐然. 基于微分对策的鲁棒导弹自动驾驶仪设计[J]. 电光与控制, 2022, 29(1): 70-74, 104.
|
|
CHEN Bilu, LIU Chunsheng, YUAN Feiran. Robust Missile Autopilot Design Based on Differential Game[J]. Electronics Optics & Control, 2022, 29(1): 70-74, 104.
|
| [9] |
万齐天, 卢宝刚, 赵雅心, 等. 基于深度强化学习的驾驶仪参数快速整定方法[J]. 系统工程与电子技术, 2022, 44(10): 3190-3199.
|
|
WAN Qitian, LU Baogang, ZHAO Yaxin, et al. Autopilot Parameter Rapid Tuning Method Based on Deep Reinforcement Learning[J]. Systems Engineering and Electronics, 2022, 44(10): 3190-3199.
|
| [10] |
ELKINS J G, SOOD R, RUMPF C. Bridging Reinforcement Learning and Online Learning for Spacecraft Attitude Control[J]. Journal of Aerospace Information Systems, 2022, 19(1): 62-69.
|
| [11] |
CANDELI A, DE TOMMASI G, LUI D G, et al. A Deep Deterministic Policy Gradient Learning Approach to Missile Autopilot Design[J]. IEEE Access, 2022, 10: 19685-19696.
|
| [12] |
王庆海, 陈琦, 王中原, 等. 基于伪谱凸优化和L1罚函数的弹道规划方法研究[J]. 弹道学报, 2022, 34(1): 22-30.
|
|
WANG Qinghai, CHEN Qi, WANG Zhongyuan, et al. Research on Trajectory Programming Method Based on Pseudo-Spectral Convex Optimization and L1 Penalty Function[J]. Journal of Ballistics, 2022, 34(1): 22-30.
|
| [13] |
石忠佼, 朱化杰, 赵良玉, 等. 考虑舵机动力学的旋转弹自适应解耦控制[J]. 航空学报, 2022, 43(3): 333-343.
|
|
SHI Zhongjiao, ZHU Huajie, ZHAO Liangyu, et al. Adaptive Decoupling Control for a Class of Spinning Rockets Considering Actuator Dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 333-343.
|
| [14] |
SHI Zhongjiao, ZHAO Liangyu, LIU Zhijie. Variational Method Based Robust Adaptive Control for a Guided Spinning Rocket[J]. Chinese Journal of Aeronautics, 2021, 34(3): 164-175.
|
| [15] |
SHTESSEL Y, EDWARDS C, FRIDMAN L, et al. Sliding Mode Control and Observation[M]. New York: Springer New York, 2014.
|
| [16] |
王雨辰, 林德福, 王伟, 等. 大跨域条件下的自适应滚转稳定容错控制方法[J]. 航空学报, 2021, 42(3): 387-396.
|
|
WANG Yuchen, LIN Defu, WANG Wei, et al. Adaptive Fault-Tolerance Control Method for Roll Stability During Phase of Large Span Flight[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 387-396.
|
| [17] |
FAN Shipeng, WANG Jiang, LIN Defu. Generalized Control Coupling Effect of Spinning Guided Projectiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 4241-4250.
|