现代防御技术 ›› 2025, Vol. 53 ›› Issue (3): 159-166.DOI: 10.3969/j.issn.1009-086x.2025.03.018

• 目标特性与探测跟踪技术 • 上一篇    

基于KPCA-SAE-BP模型的有源干扰识别算法

赵忠臣, 刘利民, 解辉, 韩壮志, 荆贺   

  1. 陆军工程大学 石家庄校区,河北 石家庄 050003
  • 收稿日期:2023-07-25 修回日期:2023-11-15 出版日期:2025-06-28 发布日期:2025-07-01
  • 作者简介:赵忠臣(1990-),男,山东聊城人。硕士生,研究方向为电子对抗理论与技术。

Active Jamming Recognition Algorithm Based on KPCA-SAE-BP Model

Zhongchen ZHAO, Limin LIU, Hui XIE, Zhuangzhi HAN, He JING   

  1. Shijiazhuang Campus,Army Engineering University of PLA,Shijiazhuang 050003,China
  • Received:2023-07-25 Revised:2023-11-15 Online:2025-06-28 Published:2025-07-01

摘要:

针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高维数据进行非线性降维与重构,利用SAE-BP神经网络完成分类识别。仿真结果表明,在干噪比(JNR)大于-1 dB的强噪声环境中,KPCA-SAE-BP网络算法对6种新型有源干扰的识别准确率达到90%以上,训练与识别时间少于0.7 s。相同参数条件下,与经典BP神经网络、SAE-BP网络、KPCA-BP网络、GA-BP网络相比,具有更好的检测识别性能。

关键词: 有源干扰识别, 核主成分分析, 堆叠自编码器, 反向传播神经网络, 特征提取, 特征降维

Abstract:

To solve the problem of low recognition accuracy of radar new active jamming in strong noise environment, a KPCA-SAE-BP network algorithm is proposed. The features of jamming signal in time domain, frequency domain, waveform domain, wavelet domain and bispectral domain are extracted to construct 67-dimensional input space, and the high-dimensional data is nonlinear dimensionality reduction and reconstruction through kernel principal component analysis (KPCA). A SAE-BP neural network is then used for classification and recognition. Simulation experiments show that in strong noise environment where JNR is greater than -1dB, the recognition accuracy of the KRPA-SAE-BP network algorithm for six new active Jamming is more than 90%, and the training and recognition time is less than 0.7 seconds. Compared with classical BP neural network, SAE-BP network, PCA-BP network and GA-BP network, it has better detection and recognition performance.

Key words: active jamming recognition, kernel principal components analysis(KPCA), stacked auto encoder(SAE), backpro pagation(BP) neural network, feature extraction, feature dimension reduction

中图分类号: