现代防御技术 ›› 2025, Vol. 53 ›› Issue (5): 39-48.DOI: 10.3969/j.issn.1009-086x.2025.05.005
收稿日期:2024-06-02
修回日期:2024-06-14
出版日期:2025-10-28
发布日期:2025-11-03
作者简介:李亚南(1988-),男,河北鹿泉人 。工程师,博士,研究方向为电磁脉冲防护技术。
Yanan LI1,2, Kai WANG1, Dejun LIU1, Zhiliang TAN2
Received:2024-06-02
Revised:2024-06-14
Online:2025-10-28
Published:2025-11-03
摘要:
作为一种新概念武器,电磁脉冲武器具有攻击速度快、覆盖范围广、效费比高、作战使用灵活等特点,是各国一直致力于研究的武器装备。阐述和分析了电磁脉冲攻击技术的研究现状,并从电磁攻击和战场防御2个角度对现阶段外军开展的电磁脉冲武器研究工作进行了概述和分析,并对电磁脉冲武器的研究重点和发展趋势进行了展望。
中图分类号:
李亚南, 王凯, 刘得军, 谭志良. 外军电磁脉冲武器发展综述[J]. 现代防御技术, 2025, 53(5): 39-48.
Yanan LI, Kai WANG, Dejun LIU, Zhiliang TAN. Review of Development of Electromagnetic Pulse Weapons in Foreign Armies[J]. Modern Defense Technology, 2025, 53(5): 39-48.
| 项目名称 | 功能 | 进展 |
|---|---|---|
| X37空间打击平台 | 可以较长时间在轨停留和在轨机动,完成各种空间任务,携带包括高功率微波武器在内的多种攻击载荷 | 已完成飞行试验 |
| 电磁软杀伤武器 | 具备电磁软杀伤能力,电磁软杀伤武器包括可定位射频干扰机和小型射频杀伤器 | 2012年部署 |
| 天基高功率微波武器 | 由多个在轨卫星构成的太空武器,且具备全天候作战能力,能够定向、多目标摧毁大气层内及太空中目标 | 2025年规划 |
表1 美国正研制的空间电磁攻击武器
Table 1 Space electromagnetic attack weapons being developed by the United States
| 项目名称 | 功能 | 进展 |
|---|---|---|
| X37空间打击平台 | 可以较长时间在轨停留和在轨机动,完成各种空间任务,携带包括高功率微波武器在内的多种攻击载荷 | 已完成飞行试验 |
| 电磁软杀伤武器 | 具备电磁软杀伤能力,电磁软杀伤武器包括可定位射频干扰机和小型射频杀伤器 | 2012年部署 |
| 天基高功率微波武器 | 由多个在轨卫星构成的太空武器,且具备全天候作战能力,能够定向、多目标摧毁大气层内及太空中目标 | 2025年规划 |
| [1] | 陈勇, 张余, 柳永祥. 电磁频谱战发展剖析与思考[J]. 指挥与控制学报, 2018, 4(4): 319-324. |
| CHEN Yong, ZHANG Yu, LIU Yongxiang. Analysis and Thinking on the Development of Electromagnetic Spectrum Warfare[J]. Journal of Command and Control, 2018, 4(4): 319-324. | |
| [2] | 杨曼, 舒百川, 朱松. 2022年外军电子战发展综述[J]. 中国电子科学研究院学报, 2023, 18(6): 573-577. |
| YANG Man, SHU Baichuan, ZHU Song. Review on the Development of Foreign Forces Electronic Warfare in 2022[J]. Journal of China Academy of Electronics and Information Technology, 2023, 18(6): 573-577. | |
| [3] | SIMS A. The Rising Drone Threat from Terrorists[J]. Georgetown Journal of International Affairs, 2018(19): 97-107. |
| [4] | 王永芳, 于槟恺, 王凌云. 基于专利分析的高功率微波武器技术发展研究[J]. 航空兵器, 2019, 26(5): 19-25. |
| WANG Yongfang, YU Binkai, WANG Lingyun. Research on the Development of High Power Microwave Weapon Based on Patent Analysis[J]. Aero Weaponry, 2019, 26(5): 19-25. | |
| [5] | 吴涛涛, 夏良斌, 曹登杰. 定向能武器在电磁空间的运用[J]. 国防科技, 2024, 45(2): 69-75. |
| WU Taotao, XIA Liangbin, CAO Dengjie. Operational Application of Directional Energy Weapon in Electromagnetic Space[J]. National Defense Technology, 2024, 45(2): 69-75. | |
| [6] | SCOTT R, KNOWLES J. AlFRL Plans Mjolnir HPM Weapon Prototype[J]. Journal of Electromagnetic Dominance, 2021, 44(9): 7-9. |
| [7] | BAUM C E. Reminiscences of High-Power Electromagnetics[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(2): 211-218. |
| [8] | 赵鸿燕, 周丽. 国外高功率微波武器发展研究[J]. 航空兵器, 2023, 30(4): 42-48. |
| ZHAO Hongyan, ZHOU Li. Research on the Development of High-Power Microwave Weapon Abroad[J]. Aero Weaponry, 2023, 30(4): 42-48. | |
| [9] | Chi BEN, HE Yong, PAN Xuchao, et al. The Research Progress on Electromagnetic Pulse Warhead[C]∥Proceedings of the 5th International Conference on Mechanical Engineering and Mechanics. Beijing: Science Press, 2014: 603-608. |
| [10] | BENFORD J, SWEGLE J A, SCHAMILOGLU E. 高功率微波[M]. 江伟华, 张驰, 译. 2版. 北京: 国防工业出版社, 2008. |
| BENFORD J, SWEGLE J A, SCHAMILOGLU E. High-power[M]. Translated by JIANG Weihua, ZHANG Chi. 2nd ed. Beijing: National Defense Industry Press, 2008. | |
| [11] | 钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015(2): 1-7. |
| QIAN Baoliang. The Research Status and Developing Tendency of High Power Microwave Technology in Foreign Countries[J]. Vacuum Electronics, 2015(2): 1-7. | |
| [12] | 武晓龙, 冯寒亮. 美国高功率微波技术发展态势研究[J]. 飞航导弹, 2019(9): 1-5, 15. |
| WU Xiaolong, FENG Hanliang. Research on the Development Trend of High-Power Microwave Technology[J]. Aerodynamic Missile Journal, 2019(9): 1-5, 15. | |
| [13] | 郭继周, 沈雪石. 定向能武器技术的发展动向[J]. 国防科技, 2014, 35(3): 32-35. |
| GUO Jizhou, SHEN Xueshi. Development Trend of Directed Energy Weapons[J]. National Defense Technology, 2014, 35(3): 32-35. | |
| [14] | RYU J, KIM K, LIM T H, et al. Integrated-Antenna-Source of Directive Peak Electric-Field Patterns for High-Power Ultrawideband Parabolic Reflector System[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 727-731. |
| [15] | PEREIRA V, KUNKOLIENKAR G R. EMP Weapon Technology Along with EMP Shielding & Detection Methodology[C]//International Conference on Comput uing.IEEE computer society 2013.6726651. |
| [16] | 美国空军研究实验室. 定向能未来 2060-美国国防部定向能技术未来 40 年远景[EB/OL]. [2021-06-26]. . |
| US Air Force Research Laboratory. Directed Energy Futures 2060-Visions for the Next 40 Years of US Department of Defense Directed Energy Technologies[EB/OL]. [2021-06-26]. . | |
| [17] | 陆震, 冯向京. 空间武器的发展态势[J]. 兵器装备工程学报, 2017, 38(9): 1-7. |
| LU Zhen, FENG Xiangjing. The Trend of Space Weapon's Evolution[J]. Journal of Ordnance Equipment Engineering, 2017, 38(9): 1-7. | |
| [18] | BAEK J E, CHO Y M, KO K C. Damage Modeling of a Low-Noise Amplifier in an RF Front-End Induced by a High Power Electromagnetic Pulse[J]. IEEE Transactions on Plasma Science, 2017, 45(5): 798-804. |
| [19] | KICHOULIYA R, SATAV S M, THOMAS M J. Experimental Investigation on Higher Order Modes in Guided Wave High Altitude Electromagnetic Pulse (HEMP) Simulator[C]∥2016 IEEE International Symposium on Electromagnetic Compatibility (EMC). Piscataway: IEEE, 2016: 153-158. |
| [20] | 宫健, 王春阳, 郭艺夺. 高功率微波武器作战效能建模及仿真[J]. 现代防御技术, 2008, 36(6): 32-35. |
| GONG Jian, WANG Chunyang, GUO Yiduo. Modeling and Simulation on Operational Efficiency of HPMW[J]. Modern Defence Technology, 2008, 36(6): 32-35. | |
| [21] | 韩阳阳, 苏五星, 李建东. 电磁脉冲炸弹的威胁及雷达防护研究[J]. 电子信息对抗技术, 2014, 29(6): 69-74. |
| HAN Yangyang, SU Wuxing, LI Jiandong. Threat of Electromagnetic Pulse Bomb and Its Radar Countermeasure[J]. Electronic Warfare Technology, 2014, 29(6): 69-74. | |
| [22] | 张俊, 冯昌林, 张世英. 电磁脉冲弹打击水面舰艇作战能力研究[J]. 兵工学报, 2015, 36(增2): 34-37. |
| ZHANG Jun, FENG Changlin, ZHANG Shiying. Research on Operational Capability of Electromagnetic Pulse Bomb Against Water Surface Ship[J]. Acta Armamentarii, 2015, 36(S2): 34-37. | |
| [23] | 葛悦涛, 蒋琪, 文苏丽, 等. 美国CHAMP项目先进反电子设备高功率微波导弹首次作战式飞评估分析[J]. 飞航导弹, 2013(4): 29-32. |
| GE Yuetao, JIANG Qi, WEN Suli, et al. Evaluation and Analysis of the First Combat Flight Test of Advanced Anti Electronic Equipment High Power Microwave Missile in the CHAMP Project[J]. Aerodynamic Missile Journal, 2013(4): 29-32. | |
| [24] | 冯寒亮, 张平. 美国电磁脉冲威胁防御领域动态述评[J]. 军事文摘, 2017(15): 53-56. |
| FENG Hanliang, ZHANG Ping. Dynamic Review of Electromagnetic Pulse Threat Defense in America[J]. Military Digest, 2017(15): 53-56. | |
| [25] | 卜格鸿, 焦彦平, 陈波. 美军天基高功率微波武器攻击卫星系统能力评估[J]. 装备指挥技术学院学报, 2007, 18(6): 37-40. |
| BU Gehong, JIAO Yanping, CHEN Bo. Evaluation of Capability for Space-Based High-Power Microwave Weapon of American Forces Attacking Satellites Systems[J]. Journal of the Academy of Equipment Command & Technology, 2007, 18(6): 37-40. | |
| [26] | 吴刚, 宋志强, 刘波. 高功率微波武器攻击卫星有效载荷系统可行性分析[J]. 现代防御技术, 2011, 39(5): 16-20, 24. |
| WU Gang, SONG Zhiqiang, LIU Bo. Analysis on Feasibility of High Power Microwave Weapons Attacking Satellite Payload[J]. Modern Defence Technology, 2011, 39(5): 16-20, 24. | |
| [27] | 禹化龙, 伍尚慧. 美军定向能武器反无人机技术进展[J]. 国防科技, 2019, 40(6): 42-47. |
| YU Hualong, WU Shanghui. Progress and Development Trend Analysis on US Directed Energy Weapons Against Unmanned Aerial Vehicles[J]. National Defense Technology, 2019, 40(6): 42-47. | |
| [28] | 张颜颜, 陈宏, 鄢振麟, 等. 高功率微波反无人机技术[J]. 电子信息对抗技术, 2020, 35(4): 39-43. |
| ZHANG Yanyan, CHEN Hong, YAN Zhenlin, et al. The Technology of High-Power Microwave Anti-Bee Swarm Drone[J]. Electronic Information Warfare Technology, 2020, 35(4): 39-43. | |
| [29] | 吴凌华, 任亚辉. 高功率微波武器反击无人机研究现状及发展趋势[J]. 移动电源与车辆, 2024, 55(1): 60-66. |
| WU Linghua, REN Yahui. Research Status and Development Trend of High Power Microwave Weapons Counterattack Unmanned Aerial Vehicle[J]. Movable Power Station & Vehicle, 2024, 55(1): 60-66. | |
| [30] | 夏牟, 黄和国, 卢文锋, 等. 国外电子对抗弹发展现状及趋势分析[J]. 航天电子对抗, 2021, 37(6): 22-27. |
| XIA Mou, HUANG Heguo, LU Wenfeng, et al. Present Situation and Development of Foreign Missiles for Electronic Counte-Measures[J]. Aerospace Electronic Warfare, 2021, 37(6): 22-27. |
| [1] | 田德逸, 郑旺辉. 无线通信系统接收端的强电磁脉冲防护仿真实验设计[J]. 现代防御技术, 2025, 53(5): 169-181. |
| [2] | 胡欣, 杨江平, 孟藏珍, 左治方, 许一, 谢雨希. 雷达抗前门耦合攻击防护能力对比分析[J]. 现代防御技术, 2024, 52(1): 116-123. |
| [3] | 智存, 吕明山, 王龙涛. 基于多源信息的舷外有源+烟幕协同干扰研究[J]. 现代防御技术, 2021, 49(6): 84-89. |
| [4] | 冯寒亮, 夏良斌, 王娟, 崔刚强, 赵芮, 刘彦升. 美国关键基础设施电磁脉冲防御政策简析[J]. 现代防御技术, 2021, 49(3): 38-46. |
| [5] | 付本龙, 宗思光. 电子对抗侦察卫星对警戒雷达侦察效能分析[J]. 现代防御技术, 2020, 48(3): 99-103. |
| [6] | 傅海军, 张维刚, 岳思橙, 吴冰. 系统级电磁脉冲模拟试验技术[J]. 现代防御技术, 2018, 46(3): 127-132. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||