现代防御技术 ›› 2025, Vol. 53 ›› Issue (6): 111-121.DOI: 10.3969/j.issn.1009-086x.2025.06.012
• 指挥控制与通信 • 上一篇
收稿日期:2024-08-15
修回日期:2024-11-01
出版日期:2025-12-28
发布日期:2025-12-31
作者简介:李朔(1999-),男,山东滕州人。硕士生,研究方向为舰船目标的毁伤评估与攻击规划。
基金资助:Shuo LI, Tongle ZHOU, Mou CHEN
Received:2024-08-15
Revised:2024-11-01
Online:2025-12-28
Published:2025-12-31
摘要:
舰船目标的攻击规划是一个收敛难、局部最优点多的复杂多目标优化问题,传统的优化算法因收敛慢、容易陷入局部最优等问题难以进行寻优。提出一种基于混合更新策略的多目标海洋捕食者算法的舰船目标攻击规划方法,通过改进种群初始化方式,构建基于运动状态系数的优化阶段划分策略,建立混合运动模式,提升舰船目标攻击规划求解的各个优化阶段中开发和探索的空间,提高全局优化性能,以获得最优的舰船目标攻击方案。通过3个不同场景的测试验证,所提出的基于混合更新策略的多目标海洋捕食者算法具有最佳的寻优性能,能够更准确地进行攻击舰船目标的规划。
中图分类号:
李朔, 周同乐, 陈谋. 改进多目标海洋捕食者算法的舰船目标攻击规划[J]. 现代防御技术, 2025, 53(6): 111-121.
Shuo LI, Tongle ZHOU, Mou CHEN. Vessel Target Attack Planning Based on Improved Multi-objective Marine Predator Algorithm[J]. Modern Defense Technology, 2025, 53(6): 111-121.
| 主要系统 | 所包含舱室号 |
|---|---|
| 火力系统 | 20,21,22,24,25,26,28,31,33,34,35,36 |
| 动力系统 | 9,12,17,18,19,23,28,29,32,33,41,47 |
| 感知与指挥系统 | 13,14,27,30,37,38,39,40,42,43,45,46,48,49,50 |
| 推进与航行系统 | 2,3,4,5,6,7,44 |
| 船体结构 | 1,5,8,10,11,15,16,20,25,33 |
表1 舱室与系统所属关系
Table 1 Compartment and system associations
| 主要系统 | 所包含舱室号 |
|---|---|
| 火力系统 | 20,21,22,24,25,26,28,31,33,34,35,36 |
| 动力系统 | 9,12,17,18,19,23,28,29,32,33,41,47 |
| 感知与指挥系统 | 13,14,27,30,37,38,39,40,42,43,45,46,48,49,50 |
| 推进与航行系统 | 2,3,4,5,6,7,44 |
| 船体结构 | 1,5,8,10,11,15,16,20,25,33 |
| 迭代阶段 | 优化策略 |
|---|---|
表2 MOMPA改进优化策略
Table 2 Improved optimization strategy for MOMPA
| 迭代阶段 | 优化策略 |
|---|---|
| 算法 | 场景1 | 场景2 | 场景3 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 最优瞄准点 | 毁伤概率/ % | 算法 运行 时间/s | 最优瞄准点 | 毁伤概率/ % | 算法运行时间/s | 最优瞄准点 | 毁伤概率/ % | 算法运行时间/s | |
| 改进MOMPA | (-39.49,3.80,8.20) (27.37,0.23,5.78) (-30.99,3.87,14.41) (-32.27,-2.20,11.33) (-36.00,-2.11,13.47) | 70.8 81.7 | 321 | (-36.07,0.88,11.26) (-31.64,1.29,11.53) (-31.70,-1.17,15.14) (-14.09,-2.02,7.80) (-31.45,1.47,8.63) (-42.55,-0.80,12.52) | 75.5 100 54.2 | 510 | (23.46,-2.98,6.72) (10.48,-1.56,9.32) (15.37,-0.83,5.52) | 47.8 33.0 | 585 |
| MOMPA | (7.37,-1.55,11.89) (14.14,1.97,4.75) (-36.51,1.32,14.69) (-32.40,-1.24,12.91) (-33.47,-0.73,4.68) | 61.7 66.9 | 315 | (-41.48,0.35,20.65) (-25.10,-2.26,4.41) (1.30,-0.15,5.97) (-16.91,0.49,9.29) (-6.61,1.30,1.50) (-30.80,-0.14,10.16) | 70.3 90.2 60.4 | 562 | (-6.94,1.67,6.67) (-8.65,1.10,15.07) (-18.81,-1.08,5.60) (13.86,-2.09,-0.06) | 41.5 27.9 | 679 |
| MOEA/D | (4.61,3.87,0.83) (22.27,-0.10,4.80) (-35.54,3.88,2.19) (-32.31,3.31,14.38) (14.17,-2.83,7.00) | 55.2 72.7 | 1 900 | (40.58,2.51,9.02) (39.49,-1.07,20.39) (-23.91,1.24,4.54) (-34.97,-1.27,8.94) (-25.56,1.86,1.78) (-18.68,3.77,1.50) (13.23,-2.22,12.62) | 69.5 80.7 55.1 | 123 | (0.80,-0.22,15.66) (37.99,1.34,2.13) (-0.37,1.40,4.11) (-23.49,3.42,14.13) | 37.8 30.7 | 198 |
| MOPSO | (-33.36,3.86,5.68) (-38.82,-0.49,19.45) (-34.48,-3.38,14.51) (37.96,3.79,5.93) (6.65,2.87,6.48) | 71.3 68.1 | 331 | (-23.83,-2.84,5.02) (-23.46,0.37,4.75) (-38.45,0.21,14.68) (-15.88,-1.81,5.05) (-60.21,0.81,19.97) (-31.15,-3.46,14.13) | 51.2 83.9 61.6 | 399 | (-12.62,2.65,14.38) (19.27,3.85,13.37) (27.36,-3.67,5.85) | 43.7 26.2 | 356 |
| NSGA-Ⅱ | (7.37,-1.55,11.89) (14.14,1.97,4.75) (-36.51,1.32,14.69) (-32.40,-1.24,12.91) (-33.47,-0.73,4.68) | 64.8 83.4 | 536 | (-7.68,1.73,5.84) (-36.52,1.88,7.19) (9.72,3.20,4.82) (-35.32,-0.19,17.67) (-29.10,0.07,6.62) (-29.78,-1.92,2.32) | 69.4 94.6 50.1 | 230 | (16.35,-0.35,9.65) (14.83,1.24,4.55) (22.46,2.18,7.30) | 41.4 32.9 | 245 |
| MOAHA | (-37.08,3.71,9.82) (21.51,-1.84,3.01) (-36.15,-2.16,15.22) (11.20,2.37,-0.10) (-38.09,-3.75,17.24) | 64.1 76.7 | 323 | (-32.53,-2.41,14.90) (39.92,2.25,15.58) (-37.12,1.30,9.04) (-0.69,-0.86,8.83) (-12.17,3.11,11.28) (-5.29,-2.71,20.12) | 67.1 63.6 53.1 | 115 | (21.39,-0.63,7.51) (-23.80,-0.14,5.19) (57.50,2.25,16.61) | 30.9 31.7 | 187 |
| MOCOA | (-5.60, 2.50,11.90) (57.40,-1.20,8.00) (16.60,3.40,6.80) (-29.00,-2.50,14.20) (-58.60,2.80,5.70) | 66.8 53.4 | 357 | (-12.59,-2.01,13.66) (12.18,-0.57,10.97) (34.8,2.58,15.31) (-31.47,-1.52,13.47) (4.09,-1.33,13.18) (21.51,-3.64,5.98) | 71.9 66.7 52.6 | 311 | (25.20,-1.30,13.30) (24.90,-2.90,1.20) (-56.80,3.60,10.40) | 37.0 31.4 | 256 |
| MOOOA | (-50.53,3.88,20.65) (27.62,3.88,13.44) (-34.27,-2.89,-0.11) (-20.85,-1.94,8.99) (20.35,3.40,-0.11) | 61.9 57.3 | 366 | (14.9,-0.37,0.52) (5.39,-1.19,3.09) (3.22,0.61,7.93) (-6.56,1.38,5.43) (-16.68,0.48,6.74) (-10.52,-1.60,4.33) | 57.9 63.7 54.7 | 233 | (27.20,3.70,18.80) (-51.70,-0.80,5.80) (20.30,2.90,16.70) | 21.8 21.0 | 231 |
表3 三种不同场景下推荐瞄准点组合
Table 3 Recommended aim point combinations for three different scenarios
| 算法 | 场景1 | 场景2 | 场景3 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 最优瞄准点 | 毁伤概率/ % | 算法 运行 时间/s | 最优瞄准点 | 毁伤概率/ % | 算法运行时间/s | 最优瞄准点 | 毁伤概率/ % | 算法运行时间/s | |
| 改进MOMPA | (-39.49,3.80,8.20) (27.37,0.23,5.78) (-30.99,3.87,14.41) (-32.27,-2.20,11.33) (-36.00,-2.11,13.47) | 70.8 81.7 | 321 | (-36.07,0.88,11.26) (-31.64,1.29,11.53) (-31.70,-1.17,15.14) (-14.09,-2.02,7.80) (-31.45,1.47,8.63) (-42.55,-0.80,12.52) | 75.5 100 54.2 | 510 | (23.46,-2.98,6.72) (10.48,-1.56,9.32) (15.37,-0.83,5.52) | 47.8 33.0 | 585 |
| MOMPA | (7.37,-1.55,11.89) (14.14,1.97,4.75) (-36.51,1.32,14.69) (-32.40,-1.24,12.91) (-33.47,-0.73,4.68) | 61.7 66.9 | 315 | (-41.48,0.35,20.65) (-25.10,-2.26,4.41) (1.30,-0.15,5.97) (-16.91,0.49,9.29) (-6.61,1.30,1.50) (-30.80,-0.14,10.16) | 70.3 90.2 60.4 | 562 | (-6.94,1.67,6.67) (-8.65,1.10,15.07) (-18.81,-1.08,5.60) (13.86,-2.09,-0.06) | 41.5 27.9 | 679 |
| MOEA/D | (4.61,3.87,0.83) (22.27,-0.10,4.80) (-35.54,3.88,2.19) (-32.31,3.31,14.38) (14.17,-2.83,7.00) | 55.2 72.7 | 1 900 | (40.58,2.51,9.02) (39.49,-1.07,20.39) (-23.91,1.24,4.54) (-34.97,-1.27,8.94) (-25.56,1.86,1.78) (-18.68,3.77,1.50) (13.23,-2.22,12.62) | 69.5 80.7 55.1 | 123 | (0.80,-0.22,15.66) (37.99,1.34,2.13) (-0.37,1.40,4.11) (-23.49,3.42,14.13) | 37.8 30.7 | 198 |
| MOPSO | (-33.36,3.86,5.68) (-38.82,-0.49,19.45) (-34.48,-3.38,14.51) (37.96,3.79,5.93) (6.65,2.87,6.48) | 71.3 68.1 | 331 | (-23.83,-2.84,5.02) (-23.46,0.37,4.75) (-38.45,0.21,14.68) (-15.88,-1.81,5.05) (-60.21,0.81,19.97) (-31.15,-3.46,14.13) | 51.2 83.9 61.6 | 399 | (-12.62,2.65,14.38) (19.27,3.85,13.37) (27.36,-3.67,5.85) | 43.7 26.2 | 356 |
| NSGA-Ⅱ | (7.37,-1.55,11.89) (14.14,1.97,4.75) (-36.51,1.32,14.69) (-32.40,-1.24,12.91) (-33.47,-0.73,4.68) | 64.8 83.4 | 536 | (-7.68,1.73,5.84) (-36.52,1.88,7.19) (9.72,3.20,4.82) (-35.32,-0.19,17.67) (-29.10,0.07,6.62) (-29.78,-1.92,2.32) | 69.4 94.6 50.1 | 230 | (16.35,-0.35,9.65) (14.83,1.24,4.55) (22.46,2.18,7.30) | 41.4 32.9 | 245 |
| MOAHA | (-37.08,3.71,9.82) (21.51,-1.84,3.01) (-36.15,-2.16,15.22) (11.20,2.37,-0.10) (-38.09,-3.75,17.24) | 64.1 76.7 | 323 | (-32.53,-2.41,14.90) (39.92,2.25,15.58) (-37.12,1.30,9.04) (-0.69,-0.86,8.83) (-12.17,3.11,11.28) (-5.29,-2.71,20.12) | 67.1 63.6 53.1 | 115 | (21.39,-0.63,7.51) (-23.80,-0.14,5.19) (57.50,2.25,16.61) | 30.9 31.7 | 187 |
| MOCOA | (-5.60, 2.50,11.90) (57.40,-1.20,8.00) (16.60,3.40,6.80) (-29.00,-2.50,14.20) (-58.60,2.80,5.70) | 66.8 53.4 | 357 | (-12.59,-2.01,13.66) (12.18,-0.57,10.97) (34.8,2.58,15.31) (-31.47,-1.52,13.47) (4.09,-1.33,13.18) (21.51,-3.64,5.98) | 71.9 66.7 52.6 | 311 | (25.20,-1.30,13.30) (24.90,-2.90,1.20) (-56.80,3.60,10.40) | 37.0 31.4 | 256 |
| MOOOA | (-50.53,3.88,20.65) (27.62,3.88,13.44) (-34.27,-2.89,-0.11) (-20.85,-1.94,8.99) (20.35,3.40,-0.11) | 61.9 57.3 | 366 | (14.9,-0.37,0.52) (5.39,-1.19,3.09) (3.22,0.61,7.93) (-6.56,1.38,5.43) (-16.68,0.48,6.74) (-10.52,-1.60,4.33) | 57.9 63.7 54.7 | 233 | (27.20,3.70,18.80) (-51.70,-0.80,5.80) (20.30,2.90,16.70) | 21.8 21.0 | 231 |
| 算法 | 场景1 | 场景2 | 场景3 |
|---|---|---|---|
| 改进MOMPA | 0.374 9 | 0.080 0 | 0.288 6 |
| MOMPA | 0.593 8 | 0.117 6 | 0.360 0 |
| MOEA/D | 1.271 7 | 1.589 1 | 1.514 1 |
| MOPSO | 1.205 1 | 0.824 1 | 0.433 1 |
| NSGA-Ⅱ | 1.732 2 | 1.795 5 | 1.715 5 |
| MOAHA | 0.694 5 | 0.765 3 | 0.411 4 |
| MOCOA | 0.726 0 | 1.036 3 | 0.410 2 |
| MOOOA | 0.982 3 | 1.004 1 | 0.504 0 |
表4 各算法spacing指标测试结果对比
Table 4 Comparison of spacing index test results of each algorithm
| 算法 | 场景1 | 场景2 | 场景3 |
|---|---|---|---|
| 改进MOMPA | 0.374 9 | 0.080 0 | 0.288 6 |
| MOMPA | 0.593 8 | 0.117 6 | 0.360 0 |
| MOEA/D | 1.271 7 | 1.589 1 | 1.514 1 |
| MOPSO | 1.205 1 | 0.824 1 | 0.433 1 |
| NSGA-Ⅱ | 1.732 2 | 1.795 5 | 1.715 5 |
| MOAHA | 0.694 5 | 0.765 3 | 0.411 4 |
| MOCOA | 0.726 0 | 1.036 3 | 0.410 2 |
| MOOOA | 0.982 3 | 1.004 1 | 0.504 0 |
| 算法 | 场景1 | 场景2 | 场景3 |
|---|---|---|---|
| MOMPA | 0.900 | 0.800 | 1 |
| MOEA/D | 0.900 | 0.714 | 0.818 |
| MOPSO | 0.857 | 0.800 | 0.909 |
| NSGA-Ⅱ | 0.800 | 0.753 | 0.853 |
| MOAHA | 0.900 | 0.800 | 0.700 |
| MOCOA | 0.778 | 0.830 | 0.710 |
| MOOOA | 1 | 0.900 | 0.800 |
表5 改进MOMPA算法与其他算法C性能指标测试结果对比
Table 5 Comparison of C performance index test results of improved MOMPA algorithm and other algorithms
| 算法 | 场景1 | 场景2 | 场景3 |
|---|---|---|---|
| MOMPA | 0.900 | 0.800 | 1 |
| MOEA/D | 0.900 | 0.714 | 0.818 |
| MOPSO | 0.857 | 0.800 | 0.909 |
| NSGA-Ⅱ | 0.800 | 0.753 | 0.853 |
| MOAHA | 0.900 | 0.800 | 0.700 |
| MOCOA | 0.778 | 0.830 | 0.710 |
| MOOOA | 1 | 0.900 | 0.800 |
| [1] | 郑治武. 改进遗传算法的舰船导航路径规划系统设计[J]. 舰船科学技术, 2020, 42(22): 121-123. |
| ZHENG Zhiwu. Design of Ship Navigation Path Planning System Based on Improved Genetic Algorithm[J]. Ship Science and Technology, 2020, 42(22): 121-123. | |
| [2] | 刘亿, 由大德, 董受全, 等. 对陆攻击巡航导弹航路规划评价指标体系设计[J]. 指挥控制与仿真, 2024, 46(3): 70-74. |
| LIU Yi, YOU Dade, DONG Shouquan, et al. Designing of Evaluation Index System on Land Attack Cruise Missile Route Planning[J]. Command Control & Simulation, 2024, 46(3): 70-74. | |
| [3] | 王永洁, 张会, 范学满, 等. 基于预案的潜射巡航导弹对陆攻击任务规划研究[J]. 战术导弹技术, 2022(5): 134-140. |
| WANG Yongjie, ZHANG Hui, FAN Xueman, et al. Research on Land Attack Mission Planning of Submarine-Launched Cruise Missile Based on Plan[J]. Tactical Missile Technology, 2022(5): 134-140. | |
| [4] | 薄宁, 李相民, 代进进, 等. 基于MDP的有/无人机编队对地攻击行动方案规划[J]. 电光与控制, 2019, 26(2): 16-22. |
| BO Ning, LI Xiangmin, DAI Jinjin, et al. MDP Based Air-to-Ground Attack Operation Planning for Manned/Unmanned Aerial Vehicle Formation[J]. Electronics Optics & Control, 2019, 26(2): 16-22. | |
| [5] | 夏维, 刘新学, 范阳涛, 等. 基于改进型多目标粒子群优化算法的武器-目标分配[J]. 兵工学报, 2016, 37(11): 2085-2093. |
| XIA Wei, LIU Xinxue, FAN Yangtao, et al. Weapon-target Assignment with an Improved Multi-objective Particle Swarm Optimization Algorithm[J]. Acta Armamentarii, 2016, 37(11): 2085-2093. | |
| [6] | 胡鹰, 吕畅, 原嘉辰. 基于改进MOEAD算法的主从式PID控制器参数寻优[J]. 计算机应用研究, 2024, 41(5): 1434-1440. |
| HU Ying, Chang LÜ, YUAN Jiachen. Parameter Optimization of Master-slave PID Controller Based on Improved MOEAD Algorithm[J]. Application Research of Computers, 2024, 41(5): 1434-1440. | |
| [7] | 苏路, 董学育, 张森, 等. 基于改进NSGA2算法的配电网分布式电源优化配置[J]. 信息技术, 2021(5): 39-43. |
| SU Lu, DONG Xueyu, ZHANG Sen, et al. Optimal Configuration of Distributed Power Generation in Distribution Network Based on Improved NSGA2 Algorithm[J]. Information Technology, 2021(5): 39-43. | |
| [8] | 杨咪, 张安, 毕文豪, 等. 基于改进遗传算法的多弹协同攻击航路规划[J]. 兵工自动化, 2020, 39(2): 28-32, 40. |
| YANG Mi, ZHANG An, BI Wenhao, et al. Multi-missile Cooperative Attacking Routing Planning Based on Improved Genetic Algorithm[J]. Ordnance Industry Automation, 2020, 39(2): 28-32, 40. | |
| [9] | 马晓明, 丁平, 晏卫东. 基于贝叶斯网络的舰船目标毁伤评估[J]. 兵工自动化, 2016, 35(6): 72-75. |
| MA Xiaoming, DING Ping, YAN Weidong. Warship-Damage Assessment Based on Bayesian Networks[J]. Ordnance Industry Automation, 2016, 35(6): 72-75. | |
| [10] | 屈文斌. 单目标毁伤效果评估模型研究[D]. 成都: 电子科技大学, 2023. |
| QU Wenbin. Single-Target Destructive Effect Assessment Model Study[D]. Chengdu: University of Electronic Science and Technology of China, 2023. | |
| [11] | 杨飞, 王青, 侯砚泽. 基于整数域改进粒子群优化算法的多平台武器目标分配[J]. 兵工学报, 2011, 32(7): 906-912. |
| YANG Fei, WANG Qing, HOU Yanze. Weapon-Target Assignment in Multi-launcher System Based on Improved Integer Field Particle Swarm Optimization Algorithm[J]. Acta Armamentarii, 2011, 32(7): 906-912. | |
| [12] | 陈青华, 姜月秋, 艾宁, 等. 舰炮弹药对典型舰船目标毁伤效能研究[J]. 舰船科学技术, 2022, 44(1): 169-173. |
| CHEN Qinghua, JIANG Yueqiu, AI Ning, et al. Research on Damage Effectiveness of Naval Gun Ammunition on Typical Ship Target[J]. Ship Science and Technology, 2022, 44(1): 169-173. | |
| [13] | 柴志君, 欧阳中辉, 李钊. 基于Henon混沌映射的多目标粒子群算法改进分析[J]. 兵工自动化, 2020, 39(11): 48-52. |
| CHAI Zhijun, OUYANG Zhonghui, LI Zhao. Improved MOPSO Optimization Based on Henon Chaotic Mapping[J]. Ordnance Industry Automation, 2020, 39(11): 48-52. | |
| [14] | ZHONG Keyu, ZHOU Guo, DENG Wu, et al. MOMPA: Multi-objective Marine Predator Algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 385: 114029. |
| [15] | 邹红波, 杨钦贺, 陈俊廷, 等. 基于INSHHO算法的多能源发电系统优化调度[J]. 电力系统及其自动化学报, 2024, 36(11): 11-18. |
| ZOU Hongbo, YANG Qinhe, CHEN Junting, et al. Optimal Scheduling of Multi-energy Power Generation System Based on INSHHO Algorithm[J]. Proceedings of the CSU-EPSA, 2024, 36(11): 11-18. | |
| [16] | 金辉, 胡寅逍, 葛红娟, 等. 基于改进GWO–SVR算法的锂电池剩余寿命预测[J]. 工程科学学报, 2024, 46(3): 514-524. |
| JIN Hui, HU Yinxiao, GE Hongjuan, et al. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on an Improved GWO-SVR Algorithm[J]. Chinese Journal of Engineering, 2024, 46(3): 514-524. | |
| [17] | SHAHEEN M A M, YOUSRI D, FATHY A, et al. A Novel Application of Improved Marine Predators Algorithm and Particle Swarm Optimization for Solving the ORPD Problem[J]. Energies, 2020, 13(21): 5679. |
| [18] | OSZUST M. Enhanced Marine Predators Algorithm with Local Escaping Operator for Global Optimization[J]. Knowledge-Based Systems, 2021, 232: 107467. |
| [19] | SHAHEEN A M, ELSAYED A M, EL-SEHIEMY R A, et al. A Modified Marine Predators Optimization Algorithm for Simultaneous Network Reconfiguration and Distributed Generator Allocation in Distribution Systems Under Different Loading Conditions[J]. Engineering Optimization, 2022, 54(4): 687-708. |
| [20] | FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine Predators Algorithm: A Nature-Inspired Metaheuristic[J]. Expert Systems with Applications, 2020, 152: 113377. |
| [1] | 张寅, 范君杰, 闫钧华, 章琪琪, 夏翀翔. 多成像模式下舰船目标SAR成像仿真[J]. 现代防御技术, 2022, 50(2): 113-120. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||