现代防御技术 ›› 2026, Vol. 54 ›› Issue (1): 129-137.DOI: 10.3969/j.issn.1009-086x.2026.01.013
• 论文 • 上一篇
收稿日期:2024-10-25
修回日期:2025-01-25
出版日期:2026-01-28
发布日期:2026-02-11
作者简介:林昊德(1998-),男,黑龙江牡丹江人。硕士生,研究方向为多导弹协同制导技术。
Haode LIN, Baoning LIU, Tao PAN, Zhe KONG
Received:2024-10-25
Revised:2025-01-25
Online:2026-01-28
Published:2026-02-11
摘要:
针对领弹-从弹架构战术导弹攻击机动目标的协同性问题,提出了一种滑模协同末制导律。以领弹和从弹的弹目距离差及其微分为协同状态变量设计滑模面,并引入领弹的剩余飞行时间估计值和从弹的视线角速率,避免了奇异性问题;将目标机动加速度视为干扰量,利用其有界性设计切换控制项,保证了系统的稳定性,增强了制导律的鲁棒性;在3种工况下进行了数学仿真,仿真结果表明提出的制导律满足协同制导要求。
中图分类号:
林昊德, 刘宝宁, 潘涛, 孔哲. 针对机动目标的滑模协同末制导律设计[J]. 现代防御技术, 2026, 54(1): 129-137.
Haode LIN, Baoning LIU, Tao PAN, Zhe KONG. Design of a Sliding Mode Cooperative Terminal Guidance Law Against Maneuvering Target[J]. Modern Defense Technology, 2026, 54(1): 129-137.
| 弹目 | 初始位置/m | 速度/ (m·s-1) | 初始弹道 倾角/rad | 目标机动 形式 |
|---|---|---|---|---|
| 目标 | (20 000,2 000) | 200 | 0 | at=3gcos(πt/2) |
| 领弹 | (-500,0) | 700 | 0.1 | |
| 从弹1 | (-500,2 000) | 700 | 0 | |
| 从弹2 | (-500,4 000) | 700 | -0.1 |
表1 工况1弹目初始条件
Table 1 Initial conditions of the missiles and the target under conditionl
| 弹目 | 初始位置/m | 速度/ (m·s-1) | 初始弹道 倾角/rad | 目标机动 形式 |
|---|---|---|---|---|
| 目标 | (20 000,2 000) | 200 | 0 | at=3gcos(πt/2) |
| 领弹 | (-500,0) | 700 | 0.1 | |
| 从弹1 | (-500,2 000) | 700 | 0 | |
| 从弹2 | (-500,4 000) | 700 | -0.1 |
| 弹目 | 脱靶量/ m | 制导时间/ s | 协同时间 误差/ms | 初始时刻剩余飞行时间估计值/s |
|---|---|---|---|---|
| 领弹 | 0.518 3 | 41.130 | 41.117 | |
| 从弹1 | 0.696 3 | 40.995 | 135 | |
| 从弹2 | 0.768 1 | 41.104 | 26 |
表2 工况1仿真结果
Table 2 Simulation results under condition 1
| 弹目 | 脱靶量/ m | 制导时间/ s | 协同时间 误差/ms | 初始时刻剩余飞行时间估计值/s |
|---|---|---|---|---|
| 领弹 | 0.518 3 | 41.130 | 41.117 | |
| 从弹1 | 0.696 3 | 40.995 | 135 | |
| 从弹2 | 0.768 1 | 41.104 | 26 |
| 弹目 | 初始位置/m | 速度/ (m/s-1) | 初始弹道 倾角/rad | 目标机动 形式 |
|---|---|---|---|---|
| 目标 | (20 000,2 000) | 200 | π/2 | at=3gcos(πt/2) |
| 领弹 | (-500,0) | 700 | 0.1 | |
| 从弹1 | (-500,2 000) | 700 | 0 | |
| 从弹2 | (-500,4 000) | 700 | -0.1 |
表3 工况2弹目初始条件
Table 3 Initial conditions of missiles and target under condition 2
| 弹目 | 初始位置/m | 速度/ (m/s-1) | 初始弹道 倾角/rad | 目标机动 形式 |
|---|---|---|---|---|
| 目标 | (20 000,2 000) | 200 | π/2 | at=3gcos(πt/2) |
| 领弹 | (-500,0) | 700 | 0.1 | |
| 从弹1 | (-500,2 000) | 700 | 0 | |
| 从弹2 | (-500,4 000) | 700 | -0.1 |
| 弹目 | 脱靶量/ m | 制导时间/ s | 协同时间 误差/ms | 初始时刻剩余飞行时间估计值/s |
|---|---|---|---|---|
| 领弹 | 0.431 2 | 31.876 | 30.264 4 | |
| 从弹1 | 0.902 3 | 31.682 | 194 | |
| 从弹2 | 0.655 6 | 31.704 | 172 |
表4 工况2仿真结果
Table 4 Simulation results under condition 2
| 弹目 | 脱靶量/ m | 制导时间/ s | 协同时间 误差/ms | 初始时刻剩余飞行时间估计值/s |
|---|---|---|---|---|
| 领弹 | 0.431 2 | 31.876 | 30.264 4 | |
| 从弹1 | 0.902 3 | 31.682 | 194 | |
| 从弹2 | 0.655 6 | 31.704 | 172 |
| 弹目 | 初始位置/m | 速度/ (m·s-1) | 初始弹道倾角/rad | 目标机动形式 |
|---|---|---|---|---|
| 目标 | (20 000,2 000) | 200 | 0 | at =0.5g |
| 领弹 | (-500,0) | 700 | 0.1 | |
| 从弹1 | (-500,2 000) | 700 | 0 | |
| 从弹2 | (-500,4 000) | 700 | -0.1 |
表5 工况3弹目初始条件
Table 5 Initial conditions of missiles and target under condition 3
| 弹目 | 初始位置/m | 速度/ (m·s-1) | 初始弹道倾角/rad | 目标机动形式 |
|---|---|---|---|---|
| 目标 | (20 000,2 000) | 200 | 0 | at =0.5g |
| 领弹 | (-500,0) | 700 | 0.1 | |
| 从弹1 | (-500,2 000) | 700 | 0 | |
| 从弹2 | (-500,4 000) | 700 | -0.1 |
| 弹目 | 脱靶量/ m | 制导时间/ s | 协同时间 误差/ms | 初始时刻剩余飞行时间估计值/s |
|---|---|---|---|---|
| 领弹 | 0.658 0 | 39.728 | 41.117 | |
| 从弹1 | 0.529 0 | 39.635 | 93 | |
| 从弹2 | 0.640 3 | 39.547 | 181 |
表6 工况3仿真结果
Table 6 Simulation results under condition 3
| 弹目 | 脱靶量/ m | 制导时间/ s | 协同时间 误差/ms | 初始时刻剩余飞行时间估计值/s |
|---|---|---|---|---|
| 领弹 | 0.658 0 | 39.728 | 41.117 | |
| 从弹1 | 0.529 0 | 39.635 | 93 | |
| 从弹2 | 0.640 3 | 39.547 | 181 |
| [1] | 栗飞, 刘琪, 郭正玉, 等. 美国制空作战能力演变对空空导弹发展的启示[J]. 航空兵器, 2021, 28(4): 11-15. |
| LI Fei, LIU Qi, GUO Zhengyu, et al. Implications of Evolution of US Air Combat Capability for Development of Air-to-Air Missile[J]. Aero Weaponry, 2021, 28(4): 11-15. | |
| [2] | 张俊宝, 张蓬蓬. 美国未来空空导弹发展研究与思考[J]. 电光与控制, 2022, 29(3): 65-68. |
| ZHANG Junbao, ZHANG Pengpeng. Research and Thinking on Future Air-to-Air Missile Development of America[J]. Electronics Optics & Control, 2022, 29(3): 65-68. | |
| [3] | RABBATH C A, SU Cy, TSOURDOS A. Guest Editorial Introduction to the Special Issue on Multivehicle Systems Cooperative Control with Application[J]. IEEE Transactions on Control Systems Technology, 2007, 15(4): 599-600. |
| [4] | PASSINO K, POLYCARPOU M, JACQUES D, et al. Cooperative Control for Autonomous Air Vehicles[M]∥MURPHEY R, PARDALOS P M. Cooperative Control and Optimization. Boston: Springer US, 2002: 233-271. |
| [5] | DONG Wenjie, FARRELL J A. Cooperative Control of Multiple Nonholonomic Mobile Agents[J]. IEEE Transactions on Automatic Control, 2008, 53(6): 1434-1448. |
| [6] | 焦思洋, 潘涛, 孔哲, 等. 基于滑模变结构的高速动能弹制导控制算法[J]. 现代防御技术, 2022, 50(2): 53-60. |
| JIAO Siyang, PAN Tao, KONG Zhe, et al. Arithmetic on Guidance and Control for Hyper Velocity Kinetic Energy Missile Based on Sliding-Mode Variable Structure Control[J]. Modern Defence Technology, 2022, 50(2): 53-60. | |
| [7] | 司玉洁, 熊华, 宋勋, 等. 三维自适应终端滑模协同制导律[J]. 航空学报, 2020, 41(增1): 96-106. |
| SI Yujie, XIONG Hua, SONG Xun, et al. Three Dimensional Guidance Law for Cooperative Operation Based on Adaptive Terminal Sliding Mode[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 96-106. | |
| [8] | 郭正玉, 韩治国. 基于快速非奇异终端滑模的多弹协同制导律设计[J]. 航空兵器, 2020, 27(3): 62-66. |
| GUO Zhengyu, HAN Zhiguo. Multi-Missile Cooperative Guidance Law Design Based on Fast Non-Singular Terminal Sliding Mode[J]. Aero Weaponry, 2020, 27(3): 62-66. | |
| [9] | 蔡远利, 刘佳琪, 苏喆. 有限时间收敛协同制导律及其仿真研究[C]∥第21届中国系统仿真技术及其应用学术年会论文集. 合肥: 中国自动化学会系统仿真专业委员会, 2020: 129-134. |
| CAI Yuanli, LIU Jiaqi, SU Zhe. Research on Cooperative Guidance Law with Finite Time Convergence and Its Simulation[C]∥The 21st China Conference on System Simulation Technology and Application. Hefei: System Simulation Professional Committee of the Chinese Society of Automation, 2020: 129-134. | |
| [10] | 董晓飞, 郝明瑞, 任章. 有向切换拓扑条件下针对机动目标的分布式协同制导方法[J]. 现代防御技术, 2024, 52(2): 104-114. |
| DONG Xiaofei, HAO Mingrui, REN Zhang. Distributed Cooperative Guidance Method for Maneuvering Targets Under Directed Switching Topologies[J]. Modern Defence Technology, 2024, 52(2): 104-114. | |
| [11] | 宋俊红, 宋申民, 徐胜利. 带有攻击角约束的多导弹协同制导律[J]. 中国惯性技术学报, 2016, 24(4): 554-560. |
| SONG Junhong, SONG Shenmin, XU Shengli. Cooperative Guidance Law for Multiple Missiles with Impact Angle Constraints[J]. Journal of Chinese Inertial Technology, 2016, 24(4): 554-560. | |
| [12] | ZHAO Jianbo, YANG Shuxing, XIONG Fenfen. Cooperative Guidance of Seeker-Less Missile with Two Leaders[J]. Aerospace Science and Technology, 2019, 88: 308-315. |
| [13] | 马萌晨, 宋申民. 拦截机动目标的多导弹协同制导律[J]. 航空兵器, 2021, 28(6): 19-27. |
| MA Mengchen, SONG Shenmin. Multi-Missile Cooperative Guidance Law for Intercepting Maneuvering Target[J]. Aero Weaponry, 2021, 28(6): 19-27. | |
| [14] | 林德福, 何绍溟, 王江, 等. 基于虚拟领弹-从弹的集群分布式协同制导技术研究[J]. 中国科学(技术科学), 2020, 50(5): 506-515. |
| LIN Defu, HE Shaoming, WANG Jiang, et al. On Virtual Leader-follower-based Distributed Cooperative Swarm Guidance Strategy[J]. Scientia Sinica(Technologica), 2020, 50(5): 506-515. | |
| [15] | 花文华, 张拥军, 张金鹏, 等. 多导弹攻击时间协同的滑模制导律[J]. 中国惯性技术学报, 2018, 26(1): 98-102. |
| HUA Wenhua, ZHANG Yongjun, ZHANG Jinpeng, et al. Sliding-Mode Guidance Law for Attack Time Cooperation of Multi-missiles[J]. Journal of Chinese Inertial Technology, 2018, 26(1): 98-102. | |
| [16] | 胡乔杨, 潘涛, 孔哲, 等. 一种攻击机动目标的角度约束时间协同制导律研究[J]. 战术导弹技术, 2022(4): 50-59, 68. |
| HU Qiaoyang, PAN Tao, KONG Zhe, et al. A Cooperative Guidance Law with Impact Angle Constraint Against Maneuvering Target[J]. Tactical Missile Technology, 2022(4): 50-59, 68. | |
| [17] | KUMAR S R, GHOSE D. Sliding Mode Control Based Guidance Law with Impact Time Constraints[C]∥2013 American Control Conference. Piscataway: IEEE, 2013: 5760-5765. |
| [18] | 刘金琨. 滑模变结构控制MATLAB仿真: 基本理论与设计方法[M]. 北京: 清华大学出版社, 2019: 38-46. |
| LIU Jinkun. Sliding Mode Control Design and MATLAB Simulation: The Basic Theory and Design Method[M]. Beijing: Tsinghua University Press, 2019: 38-46. |
| [1] | 陈天宇, 谭湘霞. 拦截大机动目标的加速导弹滑模末制导律[J]. 现代防御技术, 2025, 53(6): 91-100. |
| [2] | 杨凯源, 明超, 王晓鸣. 基于新型二阶一致性算法的角度约束协同制导律[J]. 现代防御技术, 2025, 53(4): 83-92. |
| [3] | 刘心成, 朱陈予, 韩玉兵. 无先验信息的机载组网雷达实时空间配准算法[J]. 现代防御技术, 2025, 53(4): 105-111. |
| [4] | 陈万春, 郑佳, 郑学合, 于琦, 曾鹏, 王超. 拦截弹主动段自适应能量分配弹道规划方法[J]. 现代防御技术, 2025, 53(3): 103-111. |
| [5] | 臧红岩, 王凯, 高长生, 荆武兴, 王越欣. 基于滚动时域估计的高超声速飞行器轨迹跟踪[J]. 现代防御技术, 2024, 52(2): 132-144. |
| [6] | 董晓飞, 郝明瑞, 任章. 有向切换拓扑条件下针对机动目标的分布式协同制导方法[J]. 现代防御技术, 2024, 52(2): 104-114. |
| [7] | 李昊键, 黎克波, 梁彦刚. 基于可达区预测的高速机动目标多弹拦截决策[J]. 现代防御技术, 2024, 52(2): 53-62. |
| [8] | 吴刚, 张科. 拦截大机动目标的有限时间收敛制导律[J]. 现代防御技术, 2022, 50(5): 43-51. |
| [9] | 赵永涛, 王义冬, 郭强. 半主动式舰空导弹协同制导交接方法[J]. 现代防御技术, 2020, 48(4): 67-72. |
| [10] | 田源, 王俊波, 宿敬亚. 基于视线角速率的自适应滑模导引规律[J]. 现代防御技术, 2020, 48(2): 40-44. |
| [11] | 王宏涛, 石德平. 冲压动力远程导弹燃料及起飞质量快速估算[J]. 现代防御技术, 2018, 46(1): 47-55. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||