现代防御技术 ›› 2018, Vol. 46 ›› Issue (6): 94-101.DOI: 10.3969/j.issn.1009-086x.2018.06.015

• 探测跟踪技术 • 上一篇    下一篇

面向区域覆盖的多传感器优化布站

俞宙1, 单甘霖1, 段修生1, 2   

  1. 1. 陆军工程大学 石家庄校区, 河北 石家庄 050003;
    2. 石家庄铁道大学, 河北 石家庄 050003
  • 出版日期:2018-11-30 发布日期:2020-10-22
  • 作者简介:俞宙(1994-), 男, 江苏盱眙人。硕士生, 主要从事信息融合和传感器管理。通信地址:050003 河北省石家庄市新华区和平西路97号二系火控教研室 E-mail:yyyyzhou@163.com

Multi-Sensor Optimal Deployment for Area Coverage

YU Zhou1, SHAN Gan-lin1, DUAN Xiu-sheng1, 2   

  1. 1.Army Engineering University, Shijiangzhuang Compus, Hebei Shijiazhuang 050003, China;
    2.Shijiazhuang Tiedao University, Hebei Shijiazhuang 050003, China
  • Online:2018-11-30 Published:2020-10-22

摘要: 针对约束条件下传感器优化布站问题, 提出了一种基于遗传粒子群算法(GA-PSO)的多传感器优化布站方法。首先网格化战场地理环境, 依据战场地理环境和战术条件建立布站约束矩阵;然后考虑任务需求, 建立基于探测覆盖率的目标优化函数;最后采用遗传粒子群算法求解传感器最优布站位置。仿真实验验证了所提方法的有效性和合理性。

关键词: 协同探测, 区域覆盖, 战场地理, 战术条件, 多传感器, 优化布站, 遗传粒子群算法

Abstract: To solve the problem of sensor optimal deployment in the constrained conditions, a multi-sensor optimal deployment method is proposed based on genetic algorithm particle swarm optimization (GA-PSO). The method firstly meshes the battlefield geography environment and establishes the constraint matrix of deployment according to the battlefield geography environment and tactical conditions. Then, the objective optimization function based on detection coverage is established. Finally, the GA-PSO is used to solve the optimal position of the sensor. The simulation verifies the effectiveness and rationality of the proposed method.

Key words: collaborative detection, area coverage, battlefield geography, tactical conditions, multi-sensor, optimal deployment, genetic algorithm particle swarm optimization(GA-PSO)

中图分类号: