现代防御技术 ›› 2021, Vol. 49 ›› Issue (3): 63-72.DOI: 10.3969/j.issn.1009-086x.2021.003.008

• 飞行器技术 • 上一篇    下一篇

含相变材料热结构拓扑优化研究

张晓亮, 于江祥, 刘昌洪   

  1. 北京电子工程总体研究所,北京 100854
  • 收稿日期:2021-01-11 修回日期:2021-03-01 出版日期:2021-06-20 发布日期:2021-07-12
  • 通讯作者: 100854 北京142信箱30分箱
  • 作者简介:张晓亮(1996-),男,山西晋中人。硕士生,主要从事飞行器结构优化设计研究。

Topology Optimization of Thermal Structure with Phase Change Materials

ZHANG Xiao-liang, YU Jiang-xiang, LIU Chang-hong   

  1. Beijing Institute of Electronic System Engineering,Beijing 100854,China
  • Received:2021-01-11 Revised:2021-03-01 Online:2021-06-20 Published:2021-07-12

摘要: 针对承受热载荷工况的结构,以加强筋作为研究对象,研究了一种通过引入铝基相变材料来延迟结构温升的热控方案,针对相变传热过程非线性强,灵敏度分析困难的问题,基于Kriging代理模型优化算法与设计变量较少的基于材料场级数展开的拓扑描述方法,提出了一种考虑相变传热过程与材料温度效应的以重量为约束,以截面抗弯刚度最大为目标的截面拓扑优化方法。并研究了2种铝基相变材料,得到了在热载荷作用下,使截面抗弯刚度最大的材料分布形式。对优化构型的分析表明,在TA15加强筋截面中加入铝基相变材料可以高效的延长加强筋结构在高温环境中的工作时间。

关键词: 相变材料, 非梯度拓扑优化, 热结构, 截面优化, Kriging代理模型, 材料场级数展开

Abstract: Aiming at the structure under thermal load,a thermal control scheme of delaying the temperature rise of the structure by introducing aluminum based phase change material is studied.Because of the strong nonlinearity of the heat conduction process with phase change,it is very difficult to calculate the sensitivity information.To overcome this problem,a topology optimization method of cross section considering heat conduction process with phase change and material temperature effect is proposed based on Kriging surrogate model optimization algorithm and MFSE (Material Field Series Expansion) topology description method with less design variables,which takes the weight as the constraint and the maximum bending rigidities as the objective.Two kinds of aluminum based phase change materials are studied,the material distribution form with the largest bending rigidities under thermal load is obtained.The analysis of the optimal configuration shows that the addition of aluminum based phase change material in the section of TA15 stiffeners can effectively prolong the working time of the stiffeners in high temperature environment.

Key words: phase change material, non-gradient topology optimization, thermal structure, cross-section optimization, Kriging surrogate model, material-field series expansion

中图分类号: