[1] 万明杰.国家空天防御面临的十大威胁[J].国防科技,2019,40(5):1-5. WAN Ming-jie.Ten Major Threats to National Aerospace Defense[J].National Defense Technology,2019,40(5):1-5. [2] 李勇,毕义明,齐长兴,等.弹道导弹阵地面临的低慢小飞行器威胁及应对策略研究[J].飞航导弹,2019(1):10-15. LI Yong,BI Yi-ming,QI Chang-xing,et al.On the Threat and Countermeasures of Low Slow Small Aircraft in Ballistic Missile Position[J].Aerodynamic Missile Journal,2019(1):10-15. [3] 李牧,邵继强,刘成城,等.低慢小无人机威胁与探测技术[J].警察技术,2019(2):71-74. LI Mu,SHAO Ji-qiang,LIU Cheng-cheng,et al.Low and Slow Small Drone Threat and Detection Technology[J].Police Technology,2019(2):71-74. [4] 范殿梁,徐常星,邢更力,等.立体化低慢小飞行物探测与防御系统设计及应用[J].中国安全防范技术与应用,2019(4):44-50. FAN Dian-liang,XU Chang-xing,XING Geng-li,et al.Design and Application of Three Dimensional Detection and Defense System for Low Slow and Small Flying Objects[J].China Security Protection Technology and Application,2019(4):44-50. [5] 祁蒙,王林,赵柱,等.新型“低慢小”目标探测处置系统的体系建设[J].激光与红外,2019,49(10):1155-1158. QI Meng,WANG Lin,ZHAO Zhu,et al.Advanced Low-Slow-Small Targets Detection and Disposal System Construction[J].Laser & Infrared,2019,49(10):1155-1158. [6] 蔡亚梅,姜宇航,赵霜.国外反无人机系统发展动态与趋势分析[J].航天电子对抗,2017,33(2):59-64. CAI Ya-mei,JIANG Yu-hang,ZHAO Shuang.Development Status and Trend Analysis of Counter UAV Systems[J].Aerospace Electronics Warfare,2017,33(2):59-64. [7] 李明明,卞伟伟,甄亚欣.“低慢小”航空器防控装备发展现状与问题分析[J].飞航导弹,2017(1):62-70. LI Ming-ming,BIAN Wei-wei,ZHEN Ya-xin.Analysis of Development Status of Foreign Low Slow Small Aircraft Prevention and Control Equipment[J].Aerodynamic Missile Journal,2017(1):62-70. [8] 刘俊杰,巴海涛.基于粒子群优化的观测站部署算法[J].指挥控制与仿真,2014,36(3):40-43. LIU Jun-jie,BA Hai-tao.Management of Multi-Sensor Based on Particle Swarm Optimization[J].Command Control & Simulation,2014,36(3):40-43. [9] 程彦杰,刘正堂,邹永杰.基于云遗传算法的防空导弹目标分配问题[J].指挥控制与仿真,2016,38(3):51-54. CHENG Yan-jie,LIU Zheng-tang,ZHOU Yong-jie.Target Assignment Problem of Air-Defense Missile Based on Cloud Genetic Algorithm[J].Command Control & Simulation,2016,38(3):51-54. [10] 叶文,朱爱红,欧阳中辉.基于混合离散粒子群算法的多无人作战飞机协同目标分配[J].兵工学报,2010,31(3):331-336. YE Wen,ZHU Ai-hong,OUYANG Zhong-hui.Multi-UCAV Cooperation Mission Assignment Based on Hybrid Discrete Particle Swarm Optimization Algorithm[J].Acta Armamentaria,2010,31(3):331-336. [11] 颜骥,李相民,刘立佳,等,基于Memetic算法的超视距协同空战火力分配[J].北京航空航天大学学报,2014,40(10):1424-1429. YAN Ji,LI Xiang-min,LIU Li-jia,et al.Weapon-Target Assignment Based on Memetic Optimization Algorithm in Beyond-Visual-Range Cooperative Air Combat[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(10):1424-1429. [12] 武少华.粒子群优化算法的改进及应用研究[D].宁夏:宁夏大学,2019. WU Shao-hua.Improvement and Application Research of Particle Swarm Optimization Algorithm[D].Ningxia:Ningxia University,2019. [13] CHEN J F,DO Q,HEISH H N.Training Artificial Neural Networks by a Hybrid,PSO-CS Algorithm[J].Algorithms,2015,8(2):292-308. [14] 何明慧,徐怡,王冉,等.改进的粒子群算法优化神经网络及应用[J].计算机工程与应用,2018,54(19):107-113. HE Ming-hui,XU Yi,WANG Ran,et al.Combination Dynamic Inertia Weight Particle Swarm Optimization Algorithm to Optimize Neural Network and Application[J].Computer Engineering and Applications,2018,54(19):107-113. [15] 史娇娇,姜淑娟,韩寒,等.自适应粒子群优化算法及其在测试数据生成中的应用研究[J].电子学报,2013,41(8):1555-1559. SHI Jiao-jiao,JIANG Shu-juan,HAN Han,et al.Adaptive Particle Swarm Optimization Algorithm and Its Application in Test Data Generation [J].Acta Electronica Sinica,2013,41(8):1555-1559. [16] 李学俊,徐佳,朱二周,等.任务调度算法中新的自适应惯性权重计算方法[J].计算机研究与发展,2016,53(9):1990-1999. LI Xue-jun,XU Jia,ZHU Er-zhou,et al.A Novel Computation Method for Adaptive Inertia Weight of Task Scheduling Algorithm[J].Journal of Computer Research and Development,2016,53(9):1990-1999. [17] 马国庆,李瑞峰,刘丽.学习因子和时间因子随权重调整的粒子群算法[J].计算机应用研究,2014,31(11):3291-3294. MA Guo-qing,LI Rui-feng,LIU Li.Particle Swarm Optimization Algorithm of Learning Factors and Time Factor Adjusting to Weights[J].Application Research of Computers,2014,31(11):3291-3294. [18] 徐生兵.基于动态调整惯性权重下改进学习因子的粒子群算法[J].信息安全与技术,2014,5(4):25-28. XU Sheng-bing.A New Modified Acceleration Coefficient in PSO Base on Dynamic Adjustment of Inertia Weights[J].Information Security and Technology,2014,5(4):25-28. |