现代防御技术 ›› 2024, Vol. 52 ›› Issue (4): 146-153.DOI: 10.3969/j.issn.1009-086x.2024.04.016

• 仿真技术 • 上一篇    

基于遗传算法的电磁轨道炮能量效率优化研究

李天亮, 李秋生, 刘真, 刘雨满   

  1. 中国人民解放军93221部队,北京 100085
  • 收稿日期:2023-04-21 修回日期:2023-06-02 出版日期:2024-08-28 发布日期:2024-08-26
  • 作者简介:李天亮(1981-),湖北枣阳人。副研究员,博士,研究方向为地空导弹总体技术、毁伤效能、发射控制。

Research on Optimization for Energy Efficiency of Electromagnetic Gun Based on Genetic Algorithm

Tianliang LI, Qiusheng LI, Zhen LIU, Yuman LIU   

  1. PLA 93221 Troops,Beijing 100085,China
  • Received:2023-04-21 Revised:2023-06-02 Online:2024-08-28 Published:2024-08-26

摘要:

针对易损性不同的空袭目标“订制”不同能量的拦截弹丸是电磁轨道炮的重要技术优势,针对弹丸特定预期炮口速度,轨道炮电源端不同的电压、激励电流、轨道不同尺寸等参数构成了存在较多可行解的解空间,自然存在最优解问题。以弹丸炮口速度、系统能量效率最优为目标,设计了4个逐次递进的多目标优化问题,采用非支配排序遗传算法(NSGA-Ⅱ),将求解空间逐步拓展至弹丸质量、轨道尺寸、电源电容、电压,特别是放电时序等参数,通过对轨道端、电源端的参数空间寻优,求出系统帕累托最优解,基于最优解对轨道炮的系统效率和各影响因素进行了研究,并给出了分析结论。

关键词: 电磁轨道炮, 能量效率, 解空间, 帕累托优化, 遗传算法

Abstract:

Electromagnetic gun can customize appropriate projectile according to the vulnerability of individual target. For an aim velocity of projectile, different voltage, current, and dimension of rails, which formed solution space with multiple feasible ones, and the optimal solution should be found. Based on non-dominated sorting genetic algorithm-II(NSGA-Ⅱ), taking the muzzle velocity and energy efficiency as the goal, four multi objective optimization problems are proposed, in which projectile mass, dimension of rails, capacitance, voltage and current of electric power, are involved progressively. Based on Pareto optimal solution that solved with NSGA-Ⅱ, the main influence factors were analyzed, and some useful conclusions were drawn.

Key words: electromagnetic gun, energy efficiency, solution space, Pareto optimization, genetic algorithm(GA)

中图分类号: