1 |
和钰, 常雷雷, 姜江, 等. 基于置信规则库的防空目标意图识别方法[J]. 火力与指挥控制, 2017, 42(9): 7-12.
|
|
HE Yu, CHANG Leilei, JIANG Jiang, et al. Intension Identification in Air Defense Based on Belief Rule Base Expert System Under Expert Guidance[J]. Fire Control & Command Control, 2017, 42(9): 7-12.
|
2 |
赵福均, 周志杰, 胡昌华, 等. 基于置信规则库和证据推理的空中目标意图识别方法[J]. 电光与控制, 2017, 24(8): 15-19, 50.
|
|
ZHAO Fujun, ZHOU Zhijie, HU Changhua, et al. Aerial Target Intention Recognition Approach Based on Belief-Rule-Base and Evidential Reasoning[J]. Electronics Optics & Control, 2017, 24(8): 15-19, 50.
|
3 |
李曼, 冯新喜, 张薇. 基于模板的态势估计推理模型与算法[J]. 火力与指挥控制, 2010, 35(6): 64-66.
|
|
LI Man, FENG Xinxi, ZHANG Wei. Template-Based Inference Model and Algorithm for Situation Assessment in Information Fusion[J]. Fire Control & Command Control, 2010, 35(6): 64-66.
|
4 |
杨璐, 刘付显, 朱丰, 等. 基于贝叶斯推理的海战场空中目标意图分层识别方法[J]. 火力与指挥控制, 2018, 43(7): 86-93.
|
|
YANG Lu, LIU Fuxian, ZHU Feng, et al. Hierarchical Recognition Method of Hostile Air-targets in Sea Battlefields Based on Bayesian Deduction[J]. Fire Control & Command Control, 2018, 43(7): 86-93.
|
5 |
JIN Qing, GOU Xiantai, JIN Weidong, et al. Intention Recognition of Aerial Targets Based on Bayesian Optimization Algorithm[C]//2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE). Piscataway: IEEE, 2017: 356-359.
|
6 |
王小平, 夏命辉, 林秦颖, 等. 接敌前基于D-S理论的空战意图预测[J]. 火力与指挥控制, 2016, 41(9): 185-188.
|
|
WANG Xiaoping, XIA Minghui, LIN Qinying, et al. Combat Intent Forecast Based on D-S Evidence Theory Before Contecting the Enermy[J]. Fire Control & Command Control, 2016, 41(9): 185-188.
|
7 |
曹思远, 刘以安, 薛松. 改进高维数据相似度的目标意图识别方法[J]. 传感器与微系统, 2017, 36(5): 25-28.
|
|
CAO Siyuan, LIU Yian, XUE Song. Target Tactical Intention Recognition Method of Improved High-Dimensional Data Similarity[J]. Transducer and Microsystem Technologies, 2017, 36(5): 25-28.
|
8 |
牛晓博, 赵虎, 张玉册. 基于决策树的海战场舰艇意图识别[J]. 兵工自动化, 2010, 29(6): 44-46, 53.
|
|
NIU Xiaobo, ZHAO Hu, ZHANG Yuce. Naval Vessel Intention Recognition Based on Decision Tree[J]. Ordnance Industry Automation, 2010, 29(6): 44-46, 53.
|
9 |
魏蔚, 王公宝. 基于径向基神经网络的侦察目标意图识别研究[J]. 舰船电子工程, 2018, 38(10): 37-40, 110.
|
|
WEI Wei, WANG Gongbao. Detection and Recognition of Air Targets by Unmanned Aerial Vehicle Based on RBF Neural Network[J]. Ship Electronic Engineering, 2018, 38(10): 37-40, 110.
|
10 |
翟翔宇, 杨风暴, 吉琳娜, 等. 面向空中目标作战意图分析的标准化全连接残差网络模型[J]. 国外电子测量技术, 2019, 38(12): 1-6.
|
|
ZHAI Xiangyu, YANG Fengbao, JI Linna, et al. Standardized Fully Connected Network and Residual Network Model for Combat Intention Analysis of Air Targets[J]. Foreign Electronic Measurement Technology, 2019, 38(12): 1-6.
|
11 |
朱丰, 胡晓峰, 吴琳, 等. 基于深度学习的战场态势高级理解模拟方法[J]. 火力与指挥控制, 2018, 43(8): 25-30.
|
|
ZHU Feng, HU Xiaofeng, WU Lin, et al. Simulation Method of Battlefields Situation Senior Comprehension Based on Deep Learning[J]. Fire Control & Command Control, 2018, 43(8): 25-30.
|
12 |
李战武, 李双庆, 彭明毓, 等. 基于注意力机制改进的LSTM空战目标意图识别方法[J]. 电光与控制, 2023, 30(3): 1-7.
|
|
LI Zhanwu, LI Shuangqing, PENG Mingyu, et al. An Air Combat Target Intention Recognition Method Based on LSTM Improved by Attention Mechanism[J]. Electronics Optics & Control, 2023, 30(3): 1-7.
|
13 |
WANG Yinhan, WANG Jiang, FAN Shipeng, et al. Quick Intention Identification of an Enemy Aerial Target Through Information Classification Processing[J]. Aerospace Science and Technology, 2023, 132: 108005.
|
14 |
ZHANG Zhuo, WANG Hongfei, GENG Jie, et al. An Information Fusion Method Based on Deep Learning and Fuzzy Discount-Weighting for Target Intention Recognition[J]. Engineering Applications of Artificial Intelligence, 2022, 109: 104610.
|
15 |
柴慧敏, 王宝树. 动态贝叶斯网络在战术态势估计中的应用[J]. 计算机应用研究, 2011, 28(6): 2151-2153, 2160.
|
|
CHAI Huimin, WANG Baoshu. Application of Dynamic Bayesian Networks in Tactical Situation Assessment[J]. Application Research of Computers, 2011, 28(6): 2151-2153, 2160.
|
16 |
李宁安, 张剑, 周倜. 一种TensorFlow平台上目标意图识别模型设计与实现[J]. 舰船电子工程, 2019, 39(5): 26-29.
|
|
LI Ningan, ZHANG Jian, ZHOU Ti. A Target Intent Recognition Model Designed and Implemented on TensorFlow Platform[J]. Ship Electronic Engineering, 2019, 39(5): 26-29.
|
17 |
RAMÍREZ-SANZ J M, MAESTRO-PRIETO J A, ARNAIZ-GONZÁLEZ Á, et al. Semi-Supervised Learning for Industrial Fault Detection and Diagnosis: A Systemic Review[J]. ISA Transactions, 2023, 143: 255-270.
|
18 |
AGRAWALA A. Learning with a Probabilistic Teacher[J]. IEEE Transactions on Information Theory, 1970, 16(4): 373-379.
|
19 |
HUO Xiaoyang, ZENG Xiangping, WU Si, et al. Collaborative Learning with Unreliability Adaptation for Semi-Supervised Image Classification[J]. Pattern Recognition, 2023, 133: 109032.
|
20 |
LIAO Leiyao, DU Lan, GUO Yuchen. Semi-Supervised SAR Target Detection Based on an Improved Faster R-CNN[J]. Remote Sensing, 2021, 14(1): 143.
|
21 |
DE SOUZA M C, NOGUEIRA B M, ROSSI R G, et al. A Network-Based Positive and Unlabeled Learning Approach for Fake News Detection[J]. Machine Learning, 2022, 111(10): 3549-3592.
|
22 |
DUAN Hongda, MA Fei, MIAO Lixin, et al. A Semi-Supervised Deep Learning Approach for Vessel Trajectory Classification Based on AIS Data[J]. Ocean & Coastal Management, 2022, 218: 106015.
|
23 |
RASMUS A, VALPOLA H, HONKALA M, et al. Semi-Supervised Learning with Ladder Networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 3546-3554.
|
24 |
SAJJADI M, JAVANMARDI M, TASDIZEN T. Regularization with Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 1171-1179.
|
25 |
LAINE S, AILA T. Temporal Ensembling for Semi-Supervised Learning[EB/OL]. (2017-03-15) [访问日期]. .
|
26 |
TARVAINEN A, VALPOLA H. Mean Teachers Are Better Role Models: Weight-Averaged Consistency Targets Improve Semi-Supervised Deep Learning Results[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1195-1204.
|
27 |
KE Zhanghan, WANG Daoye, YAN Qiong, et al. Dual Student: Breaking the Limits of the Teacher in Semi-Supervised Learning[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2019: 6727-6735.
|
28 |
MIYATO T, MAEDA S I, KOYAMA M, et al. Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1979-1993.
|
29 |
PARK S, PARK J K, SHIN S J, et al. Adversarial Dropout for Supervised and Semi-Supervised Learning[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2018: 3917-3924.
|
30 |
HUANG Shuzhan, TANG Jian, DAI Juying, et al. Signal Status Recognition Based on 1DCNN and Its Feature Extraction Mechanism Analysis[J]. Sensors, 2019, 19(9): 2018.
|
31 |
HAMEED Z, GARCIA-ZAPIRAIN B. Sentiment Classification Using a Single-Layered BiLSTM Model[J]. IEEE Access, 2020, 8: 73992-74001.
|