1 |
燕雪峰, 张德平, 黄晓冬, 等. 面向任务的体系效能评估[M]. 北京: 电子工业出版社, 2020.
|
|
YAN Xuefeng, ZHANG Deping, HUANG Xiaodong, et al. Mission Oriented Effectiveness Evaluation and Optimization of System of Systems[M]. Beijing: Publishing House of Electronics Industry, 2020.
|
2 |
HELMBOLD R L. Letter to the Editor—A Modification of Lanchester's Equations[J]. Operations Research, 1965, 13(5): 857-859.
|
3 |
TAYLOR J G. Lanchester-Type Models of Warfare and Optimal Control[J]. Naval Research Logistics Quarterly, 1974, 21(1): 79-106.
|
4 |
杨建, 董岩, 边月奎, 等. 联合作战背景下的体系效能评估方法[J]. 科技导报, 2022, 40(4): 106-117.
|
|
YANG Jian, DONG Yan, BIAN Yuekui, et al. Effectiveness Evaluation for System-of-Systems: A Review of the State of the Art[J]. Science & Technology Review, 2022, 40(4): 106-117.
|
5 |
TUNCER O, CIRPAN H A. Adaptive Fuzzy Based Threat Evaluation Method for Air and Missile Defense Systems[J]. Information Sciences, 2023, 643: 119191.
|
6 |
李春臻, 刘婵媛, 高文霞, 等. 基于ADC方法的炮射导弹系统效能评估[J]. 计算机测量与控制, 2022, 30(4): 142-148.
|
|
LI Chunzhen, LIU Chanyuan, GAO Wenxia, et al. Effectiveness Evaluation of the Gun-Launched Missile System Based on the ADC Method[J]. Computer Measurement & Control, 2022, 30(4): 142-148.
|
7 |
HU Jianwen, WANG Zhihui, GAO Yuan, et al. Uncertainty Entropy-Based Exploratory Evaluation Method and Its Applications on Missile Effectiveness Evaluation[J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1602-1613.
|
8 |
QU Shi, LIU Jianxun, LIU Jie. A Method for Evaluating the Effectiveness of Antimissile Early Warning Operations Based on SEA[C]∥2023 IEEE International Conference on Sensors, Electronics and Computer Engineering (ICSECE). Piscataway: IEEE, 2023: 1300-1303.
|
9 |
JIA Yachao, YANG Zhen, HE Yupeng, et al. Dynamic Effectiveness Evaluation Method for Beyond-Visual-Range Air-to-Air Missile After Launch[C]∥2023 IEEE International Conference on Unmanned Systems (ICUS). Piscataway: IEEE, 2023: 482-487.
|
10 |
赵海燕, 周峰, 杨文静, 等. 基于IPSO-SVR的反导装备体系效能评估方法研究[J]. 空军工程大学学报, 2024, 25(5): 82-89.
|
|
ZHAO Haiyan, ZHOU Feng, YANG Wenjing, et al. Research on Effectiveness Evaluation Method in Anti-Missile Equipment System Based on IPSO-SVR[J]. Journal of Air Force Engineering University, 2024, 25(5): 82-89.
|
11 |
李妮, 李玉红, 龚光红, 等. 基于深度学习的体系作战效能智能评估及优化[J]. 系统仿真学报, 2020, 32(8): 1425-1435.
|
|
LI Ni, LI Yuhong, GONG Guanghong, et al. Intelligent Effectiveness Evaluation and Optimization on Weapon System of Systems Based on Deep Learning[J]. Journal of System Simulation, 2020, 32(8): 1425-1435.
|
12 |
李清亮, 林焕明, 吴振宙, 等. 基于改进狼群算法-深度置信网络(IGWO-DBN)模型的旋风分离器压降预测[J]. 北京化工大学学报(自然科学版), 2023, 50(1): 107-115.
|
|
LI Qingliang, LIN Huanming, WU Zhenzhou, et al. Pressure Drop Prediction for a Cyclone Separator Based on an Improved Grey Wolf Optimizer-Deep Belief Network (IGWO-DBN) Model[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2023, 50(1): 107-115.
|
13 |
XU Lihong, ZHANG Shenghuan. Music Feature Recognition and Classification Using a Deep Learning Algorithm[J]. International Journal of Computational Intelligence and Applications, 2023, 22(3): 2350012.
|
14 |
高星, 高飞, 高原, 等. 基于深度置信网络的火炮炮口振动预测研究[J]. 火力与指挥控制, 2023, 48(11): 164-168.
|
|
GAO Xing, GAO Fei, GAO Yuan, et al. A Study on the Prediction of Muzzle Vibration Based on DBN[J]. Fire Control & Command Control, 2023, 48(11): 164-168.
|
15 |
胡春艳, 于来行. 改进深度置信网络的苹果内部品质评价[J]. 食品与机械, 2022, 38(4): 156-161, 206.
|
|
HU Chunyan, YU Laihang. Evaluation of Apple Inner Quality Based on Improved Deep Belief Network[J]. Food & Machinery, 2022, 38(4): 156-161, 206.
|
16 |
GURUVAMMAL S, CHELLATAMILAN T, DEBORAH L J. Automatic Detection of Autism in Young Children Using Weighted Logarithmic Transformed Data with Optimized Deep Learning[J]. The Computer Journal, 2022, 65(10): 2678-2692.
|
17 |
张凯, 杨朋澄, 彭开香, 等. 基于深度置信网络的多模态过程故障评估方法及应用[J]. 自动化学报, 2024, 50(1): 89-102.
|
|
ZHANG Kai, YANG Pengcheng, PENG Kaixiang, et al. A Deep Belief Network-Based Fault Evaluation Method for Multimode Processes and Its Applications[J]. Acta Automatica Sinica, 2024, 50(1): 89-102.
|
18 |
刘帼巾, 刘达明, 缪建华, 等. 基于变分模态分解和改进灰狼算法优化深度置信网络的自动转换开关故障识别[J]. 电工技术学报, 2024, 39(4): 1221-1233.
|
|
LIU Guojin, LIU Daming, MIAO Jianhua, et al. Fault Identification of Automatic Transfer Switching Equipment Based on VMD-WPE and IGWO Optimized DBN[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1221-1233.
|
19 |
KARUNAKAR REDDY V, KUMAR AV R. Multi-Channel Neuro Signal Classification Using Adam-Based Coyote Optimization Enabled Deep Belief Network[J]. Biomedical Signal Processing and Control, 2022, 77: 103774.
|
20 |
陈剑, 黄志, 徐庭亮, 等. 基于改进二进制粒子群算法优化DBN的轴承故障诊断[J]. 组合机床与自动化加工技术, 2024(1): 168-173.
|
|
CHEN Jian, HUANG Zhi, XU Tingliang, et al. DBN Is Optimized Based on Improved Binary Particle Swarm Algorithm Bearing Fault Diagnosis[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(1): 168-173.
|
21 |
TANG Lu, HUI Yu, YANG Hang, et al. Medical Image Fusion Quality Assessment Based on Conditional Generative Adversarial Network[J]. Frontiers in Neuroscience, 2022, 16: 986153.
|
22 |
LAUNAY H, RYCKELYNCK D, LACOURT L, et al. Deep Multimodal Autoencoder for Crack Criticality Assessment[J]. International Journal for Numerical Methods in Engineering, 2022, 123(6): 1456-1480.
|
23 |
吴涌钏, 孙刚, 陶俊. 基于深度置信网络与多目标粒子群算法的通用飞机机翼优化设计[J]. 空气动力学学报, 2023, 41(12): 16-27.
|
|
WU Yongchuan, SUN Gang, TAO Jun. Optimization Design on the Wing of a General Aviation Airplane Based on Deep Belief Network and Multi-Objective Particle Swarm Optimization Algorithm[J]. Acta Aerodynamica Sinica, 2023, 41(12): 16-27.
|
24 |
QIN Minglei, YANG Yongbiao, ZHAO Xianqiu, et al. Low-Carbon Economic Multi-Objective Dispatch of Integrated Energy System Considering the Price Fluctuation of Natural Gas and Carbon Emission Accounting[J]. Protection and Control of Modern Power Systems, 2023, 8(1): 61.
|
25 |
黄波, 杨正, 王超. 基于灰狼算法优化DBN的医院网络异常流量识别[J]. 微型电脑应用, 2022, 38(1): 34-36, 44.
|
|
HUANG Bo, YANG Zheng, WANG Chao. Recognition of Abnormal Traffic in Hospital Network Based on Gray Wolf Algorithm to Optimize DBN[J]. Microcomputer Applications, 2022, 38(1): 34-36, 44.
|