现代防御技术 ›› 2025, Vol. 53 ›› Issue (3): 1-10.DOI: 10.3969/j.issn.1009-086x.2025.03.001

• 专栏 •    

基于MR-WPA的无人机蜂群多目标打击任务分配

费陈, 赵亮, 李银城, 王树泉, 段正裕   

  1. 武警士官学校,浙江 杭州 311400
  • 收稿日期:2024-10-22 修回日期:2025-01-15 出版日期:2025-06-28 发布日期:2025-07-01
  • 通讯作者: 赵亮
  • 作者简介:费陈(1994-),男,安徽芜湖人。讲师,硕士,研究方向为无人集群、强化学习、机器学习、无线通信。

Multi-objective Strike Task Allocation for UAV Swarms Based on MR-WPA

Chen FEI, Liang ZHAO, Yincheng LI, Shuquan WANG, Zhengyu DUAN   

  1. Noncommissioned Officer Academy of PAP,Hangzhou 311400,China
  • Received:2024-10-22 Revised:2025-01-15 Online:2025-06-28 Published:2025-07-01
  • Contact: Liang ZHAO

摘要:

无人机凭借其高机动性和高耦合性,被广泛应用于多个领域,尤其在军事领域,无人机蜂群的多目标任务分配具有关键意义。结合国内外无人机任务分配的研究现状与最新进展,针对传统算法在复杂任务中存在的鲁棒性不足、收敛速度慢以及易陷入局部最优等问题,提出一种基于多规则机制的改进狼群算法进行求解,构建以最大化打击收益为目标的优化模型,综合考虑对方目标航程、攻击威胁及价值等因素。通过设计自主游走的头狼生成规则、多策略探狼游走规则和自适应步长的猛狼围攻规则,平衡全局探索与局部开发,显著提升搜索效率。仿真验证结果表明,与其他启发式算法相比,该算法具备更快的优化速度和更优的性能,展现出广阔的应用前景。

关键词: 无人机蜂群, 狼群算法, 多规则机制, 任务分配, 多目标打击

Abstract:

Unmanned aerial vehicles (UAVs) are widely applied across various fields due to their high mobility and strong coupling capabilities. In the military domain, multi-objective task allocation for UAV swarms holds critical significance. Based on the current research status and latest advancements in UAV task allocation, this paper addresses the limitations of traditional algorithms, such as insufficient robustness, slow convergence, and susceptibility to local optima in complex missions—by proposing an improved wolf pack algorithm (IWPA) based on a multi-rule mechanism. An optimization model is constructed with the objective of maximizing strike effectiveness, incorporating factors such as enemy target distance, attack threat, and target value.Simulation results demonstrate that, compared to other heuristic algorithms, the proposed method achieves faster optimization speed and superior performance, indicating broad application prospects.

Key words: UAV swarm, wolf pack algorithm(WPA), multi-rule mechanism, task allocation, multi-objective strike

中图分类号: