现代防御技术 ›› 2026, Vol. 54 ›› Issue (1): 138-148.DOI: 10.3969/j.issn.1009-086x.2026.01.014
• 论文 • 上一篇
收稿日期:2024-11-05
修回日期:2025-02-24
出版日期:2026-01-28
发布日期:2026-02-11
作者简介:雷瑶(1996-),女,陕西绥德人。博士生,研究方向为装备验收技术与运用。
Yao LEI, Jianyin ZHAO, Weimin LÜ
Received:2024-11-05
Revised:2025-02-24
Online:2026-01-28
Published:2026-02-11
摘要:
为解决影响装备健康状态参数的权重分配及各参数评估值的融合问题,根据装备特点和其自身延寿需求,提出基于区间直觉模糊集(interval-valued intuitionistic fuzzy,IVIF)和融合逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)与秩和比法(rank-sum ratio,RSR)的装备健康状态评估方法。引入IVIF确定决策专家自身权重,根据其评估犹豫度及相似度综合确定指标权重,获取加权规范化矩阵;建立TOPSIS-RSR的评估框架实现对装备的健康状态评估及决策;利用仿真案例对多个同型号装备健康状态进行评估排序分级,对比2种已知评估方法验证方法了的可行性。
中图分类号:
雷瑶, 赵建印, 吕卫民. 基于直觉模糊集的装备健康状态评估方法[J]. 现代防御技术, 2026, 54(1): 138-148.
Yao LEI, Jianyin ZHAO, Weimin LÜ. Health Assessment of Equipment Based on IVIF[J]. Modern Defense Technology, 2026, 54(1): 138-148.
语言 术语 | IVIF值 | |
|---|---|---|
| 非常专业 | ||
| 较为专业 | ||
| 专业 | ||
| 较不专业 | ||
| 非常不专业 | ||
| 极不专业 | ||
表1 专家意见重要度权重参照表[14]
Table 1 Scale for the importance weights of the DMs
语言 术语 | IVIF值 | |
|---|---|---|
| 非常专业 | ||
| 较为专业 | ||
| 专业 | ||
| 较不专业 | ||
| 非常不专业 | ||
| 极不专业 | ||
| 语言术语 | IVIF值 | IVIF相对值 | ||
|---|---|---|---|---|
| 同等重要(EI) | ||||
| 介值(IV) | ||||
| 中等重要(MMI) | ||||
| 介值(IV2) | ||||
| 更加重要(SMI) | ||||
| 介值(IV3) | ||||
| 非常重要(VSMI) | ||||
| 介值(IV4) | ||||
| 极其重要(EMI) | ||||
表2 成对比较语言量表[29]
Table 2 Linguistic scale used for pairwise comparisons [29]
| 语言术语 | IVIF值 | IVIF相对值 | ||
|---|---|---|---|---|
| 同等重要(EI) | ||||
| 介值(IV) | ||||
| 中等重要(MMI) | ||||
| 介值(IV2) | ||||
| 更加重要(SMI) | ||||
| 介值(IV3) | ||||
| 非常重要(VSMI) | ||||
| 介值(IV4) | ||||
| 极其重要(EMI) | ||||
待估 装备 | 性能指标 | |||||
|---|---|---|---|---|---|---|
| X1 | X2 | X3 | X4 | X5 | X6 | |
| 1 | 26.430 | -7.790 | -11.060 | -4.443 | -6.191 | 3.779 |
| 2 | 27.430 | -7.998 | -11.400 | -4.565 | -6.376 | 3.818 |
| 3 | 27.370 | -7.939 | -11.090 | -4.697 | -6.376 | 3.813 |
| 4 | 27.400 | -8.266 | -11.280 | -4.716 | -6.503 | 3.872 |
| 5 | 27.430 | -8.261 | -11.280 | -4.716 | -6.499 | 3.867 |
| 6 | 27.430 | -8.266 | -11.250 | -4.716 | -6.494 | 3.852 |
| 7 | 27.120 | -8.090 | -10.710 | -4.912 | -6.308 | 3.720 |
| 8 | 26.810 | -8.098 | -11.120 | -4.648 | -6.547 | 4.057 |
| 9 | 26.560 | -8.017 | -11.180 | -4.458 | -6.425 | 4.067 |
| 10 | 26.620 | -8.061 | -11.150 | -4.599 | -6.386 | 4.028 |
表3 待估装备健康状态评估指标参数值
Table 3 Parameter values of health assessment for the equipment to be evaluated
待估 装备 | 性能指标 | |||||
|---|---|---|---|---|---|---|
| X1 | X2 | X3 | X4 | X5 | X6 | |
| 1 | 26.430 | -7.790 | -11.060 | -4.443 | -6.191 | 3.779 |
| 2 | 27.430 | -7.998 | -11.400 | -4.565 | -6.376 | 3.818 |
| 3 | 27.370 | -7.939 | -11.090 | -4.697 | -6.376 | 3.813 |
| 4 | 27.400 | -8.266 | -11.280 | -4.716 | -6.503 | 3.872 |
| 5 | 27.430 | -8.261 | -11.280 | -4.716 | -6.499 | 3.867 |
| 6 | 27.430 | -8.266 | -11.250 | -4.716 | -6.494 | 3.852 |
| 7 | 27.120 | -8.090 | -10.710 | -4.912 | -6.308 | 3.720 |
| 8 | 26.810 | -8.098 | -11.120 | -4.648 | -6.547 | 4.057 |
| 9 | 26.560 | -8.017 | -11.180 | -4.458 | -6.425 | 4.067 |
| 10 | 26.620 | -8.061 | -11.150 | -4.599 | -6.386 | 4.028 |
评估 专家 | 语言 术语 | IVIF值 | 意见 权重 | |
|---|---|---|---|---|
| 1 | 专业 | 0.303 3 | ||
| 2 | 专业 | 0.303 3 | ||
| 3 | 非常专业 | 0.393 4 | ||
表4 专家评估意见专业度及权重
Table 4 Professionalism and weight of expert evaluation opinions
评估 专家 | 语言 术语 | IVIF值 | 意见 权重 | |
|---|---|---|---|---|
| 1 | 专业 | 0.303 3 | ||
| 2 | 专业 | 0.303 3 | ||
| 3 | 非常专业 | 0.393 4 | ||
表5 专家对参数重要性评估意见
Table 5 Expert opinions on importance assessment of parameters
表6 各专家意见综合IVIF值
Table 6 Comprehensive IVIF value based on expert opinions
表7 重要参数值权重
Table 7 Weights of important parameter values
表8 加权规范化后参数数值
Table 8 Weighted normalized parameter values
表9 待估装备贴近度
Table 9 Estimated equipment posting progress
表10 RSRi 分布及对应概率单位值
Table 10 RSRi distribution and corresponding Probit(pi ) alues
表11 常用分档情况下概率单位的临界值
Table 11 Critical value of probit in common grades
表12 装备评估结果
Table 12 Results of equipment evaluation
| 对比参数 | Kendall's tau 相关系数 | 排序位置 差值均值 |
|---|---|---|
| 基于IF方法 | 0.91 | 0.40 |
| TOPSIS算法 | 0.82 | 0.80 |
| 本文提出方法 | 0.73 | 1.20 |
表13 对比参数结果
Table 13 Compare the results of the parameters
| 对比参数 | Kendall's tau 相关系数 | 排序位置 差值均值 |
|---|---|---|
| 基于IF方法 | 0.91 | 0.40 |
| TOPSIS算法 | 0.82 | 0.80 |
| 本文提出方法 | 0.73 | 1.20 |
| [1] | MA Hongzhan, CHU Xuening, Guolin LÜ, et al. An Integrated Approach for Design Improvement Based on Analysis of Time-Dependent Product Usage Data[J]. Journal of Mechanical Design, 2017, 139(11): 111401. |
| [2] | 卢一相, 高清维, 张德祥. 基于AR模型的齿轮箱振动故障检测[J]. 计算机技术与发展, 2007, 17(6): 250-253. |
| LU Yixiang, GAO Qingwei, ZHANG Dexiang. Fault Detection of Gearbox Vibration Based on AR Model[J]. Computer Technology and Development, 2007, 17(6): 250-253. | |
| [3] | 陈振勋, 辛小龙, 贺瑞缠. 基于Mann-Kendall法的地震前兆观测数据异常分析[J]. 西北地震学报, 2012, 34(3): 250-255. |
| CHEN Zhenxun, XIN Xiaolong, HE Ruichan. The Abnormal Analysis of Seismic Data Based on the Method of Mann-Kendall[J]. Northwestern Seismological Journal, 2012, 34(3): 250-255. | |
| [4] | YE Weimin, GAO Cen, LIU Zhangrong, et al. A Fuzzy-AHP-Based Variable Weight Safety Evaluation Model for Expansive Soil Slope[J]. Natural Hazards, 2023, 119(1): 559-581. |
| [5] | XIONG Conghui, FANG Dan, ZOU Xuebing, et al. Fuzzy Mathematics-Based Evaluation Method for Comprehensive River Improvement Project Benefits[J]. IEEE Access, 2024, 12: 126344-126355. |
| [6] | MA Shun, CHEN Ming, MEI Shiyan. Research on the Optimal Model for the Evaluation of New Power System Investment Projects Based on the Cloud Model-DS Evidence Theory-TOPSIS Method[J]. Energy Science & Engineering, 2024, 12(1): 22-38. |
| [7] | XIONG Xinxin, YANG Hui, CHENG Nong, et al. Remaining Useful Life Prognostics of Aircraft Engines Based on Damage Propagation Modeling and Data Analysis[C]∥2015 8th International Symposium on Computational Intelligence and Design (ISCID). Piscataway: IEEE, 2015: 143-147. |
| [8] | 梁泽明, 姜洪权, 周秉直, 等. 多参数相似性信息融合的剩余寿命预测[J]. 计算机集成制造系统, 2018, 24(4): 813-819. |
| LIANG Zeming, JIANG Hongquan, ZHOU Bingzhi, et al. Multi-variable Similarity-Based Information Fusion Method for Remaining Useful Life Prediction[J]. Computer Integrated Manufacturing Systems, 2018, 24(4): 813-819. | |
| [9] | 谷梦瑶, 陈友玲, 罗凯. 多退化变量下基于灰色生成率序列的相似性寿命预测方法[J]. 计算机集成制造系统, 2017, 23(3): 525-533. |
| GU Mengyao, CHEN Youling, LUO Kai. Multi-index Modeling for Similarity-Based Residual Life Estimation Based on Grey Generation Rate Sequence[J]. Computer Integrated Manufacturing Systems, 2017, 23(3): 525-533. | |
| [10] | 张彬. 数据驱动的机械设备性能退化建模与剩余寿命预测研究[D]. 北京: 北京科技大学, 2016. |
| ZHANG Bin. Research on Data-Driven Performance Degradation Modeling and Remaining Useful Life Prediction for Mechanical Equipments[D]. Beijing: University of Science and Technology Beijing, 2016. | |
| [11] | 侯良生. 基于人工神经网络的船舶轮机装备故障诊断研究[D]. 大连: 大连海事大学, 2021. |
| HOU Liangsheng. Research on Fault Diagnosis of Marine Equipment Based on Artificial Neural Network[D]. Dalian: Dalian Maritime University, 2021. | |
| [12] | 逯程, 徐廷学, 赵骏. 基于DSm证据云物元模型的装备状态评估方法[J]. 系统工程与电子技术, 2017, 39(7): 1549-1554. |
| LU Cheng, XU Tingxue, ZHAO Jun. Equipment Condition Assessment Method Based on Cloud Matter-Element Model of DSm Evidence[J]. Systems Engineering and Electronics, 2017, 39(7): 1549-1554. | |
| [13] | BÜYÜKÖZKAN G, GÖÇER F. Application of a New Combined Intuitionistic Fuzzy MCDM Approach Based on Axiomatic Design Methodology for the Supplier Selection Problem[J]. Applied Soft Computing, 2017, 52: 1222-1238. |
| [14] | BÜYÜKÖZKAN G, GÖÇER F, FEYZIOĞLU O. Cloud Computing Technology Selection Based on Interval-Valued Intuitionistic Fuzzy MCDM Methods[J]. Soft Computing, 2018, 22(15): 5091-5114. |
| [15] | ŞENEL M, ŞENEL B, HAVLE C A. Risk Analysis of Ports in Maritime Industry in Turkey Using FMEA Based Intuitionistic Fuzzy TOPSIS Approach[J]. ITM Web of Conferences, 2018, 22: 01018. |
| [16] | YENI F B, ÖZÇELIK K. Interval-Valued Atanassov Intuitionistic Fuzzy CODAS Method for Multi Criteria Group Decision Making Problems[J]. Group Decision and Negotiation, 2019, 28(2): 433-452. |
| [17] | BÜYÜKÖZKAN G, FEYZIOĞLU O, HAVLE C A. Analysis of Success Factors in Aviation 4.0 Using Integrated Intuitionistic Fuzzy MCDM Methods[C]∥Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making. Cham: Springer International Publishing, 2020: 598-606. |
| [18] | BÜYÜKÖZKAN G, HAVLE C A, FEYZIOĞLU O, et al. A Combined Group Decision Making Based IFCM and SERVQUAL Approach for Strategic Analysis of Airline Service Quality[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(1): 859-872. |
| [19] | SHAFII M, HOSSEINI S M, ARAB M, et al. Performance Analysis of Hospital Managers Using Fuzzy AHP and Fuzzy TOPSIS: Iranian Experience[J]. Global Journal of Health Science, 2015, 8(2): 137-155. |
| [20] | CHEN Faan, WANG Jianjun, DENG Yajuan. Road Safety Risk Evaluation by Means of Improved Entropy TOPSIS–RSR[J]. Safety Science, 2015, 79: 39-54. |
| [21] | 陈佳君, 胡冰, 施端阳, 等. 基于改进TOPSIS-RSR的雷达装备测试性评估方法[J]. 现代防御技术, 2024, 52(5): 162-172. |
| CHEN Jiajun, HU Bing, SHI Duanyang, et al. Radar Equipment Testability Evaluation Method Based on Improved TOPSIS-RSR[J]. Modern Defence Technology, 2024, 52(5): 162-172. | |
| [22] | ALLAKI F EL, CHRISTENSEN J, VALLIÈRES A. A Modified TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) Applied to Choosing Appropriate Selection Methods in Ongoing Surveillance for Avian Influenza in Canada[J]. Preventive Veterinary Medicine, 2019, 165: 36-43. |
| [23] | 宋丽娜, 赵亚娟. TOPSIS法、RSR法及二者模糊联合方法对我国儿童保健工作质量的评价[J]. 中国妇幼保健, 2019, 34(17): 3875-3879. |
| SONG Lina, ZHAO Yajuan. Evaluation of the Quality of Child Health Care Based on TOPSIS Method, RSR Method, Fuzzy Combination of TOPSIS Method and RSR Method[J]. Maternal & Child Health Care of China, 2019, 34(17): 3875-3879. | |
| [24] | 王震, 秦天燕, 边沁, 等. 加权TOPSIS法结合RSR法评价2016年甘肃省各市州新农合运行效果[J]. 中国卫生统计, 2018, 35(4): 563-565. |
| WANG Zhen, QIN Tianyan, BIAN Qin, et al. Weighted TOPSIS Method Combined with RSR Method to Evaluate the Operation Effect of the New Rural Cooperative Medical Care System in All Cities and Prefectures of Gansu Province in 2016[J]. Chinese Journal of Health Statistics, 2018, 35(4): 563-565. | |
| [25] | 王松. 运用TOPSIS法和秩和比法相结合评价医院病床利用效率[J]. 中国病案, 2019, 20(3): 39-42. |
| WANG Song. Using TOPSIS Method and Rank and Ratio Method to Evaluate Hospital Bed Utilization Efficiency[J]. Chinese Medical Record, 2019, 20(3): 39-42. | |
| [26] | ÇELIKBILEK Y, TÜYSÜZ F. An In-Depth Review of Theory of the TOPSIS Method: An Experimental Analysis[J]. Journal of Management Analytics, 2020, 7(2): 281-300. |
| [27] | PANDEY V, KOMAL, DINCER H. A Review on TOPSIS Method and Its Extensions for Different Applications with Recent Development[J]. Soft Computing, 2023, 27(23): 18011-18039. |
| [28] | 田凤调. 秩和比法的应用[M]. 北京: 人民卫生出版社, 2002. |
| TIAN Fengtiao. The Application of the Rank Sum Ratio Method[M]. Beijing: People's Medical Publishing House, 2002. | |
| [29] | ABDULLAH L, NAJIB L. A New Preference Scale Mcdm Method Based on Interval-Valued Intuitionistic Fuzzy Sets and the Analytic Hierarchy Process[J]. Soft Computing, 2016, 20(2): 511-523. |
| [1] | 陈佳君, 胡冰, 施端阳, 杨丽佳. 基于改进TOPSIS-RSR的雷达装备测试性评估方法[J]. 现代防御技术, 2024, 52(5): 162-172. |
| [2] | 施端阳, 林强, 胡冰, 陈佳君. 改进AHM-TOPSIS的智能化雷达信息处理性能评估方法[J]. 现代防御技术, 2023, 51(5): 93-103. |
| [3] | 刘丹丹, 唐毓燕, 原艳斌, 倪晓峰, 荆云建. 导弹装备健康管理系统的设计与应用[J]. 现代防御技术, 2022, 50(4): 140-147. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||