[1] |
何文彪, 胡永江, 李文广. 面向无人机航路的优化算法研究综述[J]. 现代防御技术, 2024, 52(4): 24-32.
|
|
HE Wenbiao, HU Yongjiang, LI Wenguang. A Survey on Optimization Algorithms for UAV Routes [J]. Modern Defence Technology, 2024, 52(4): 24-32.
|
[2] |
于强, 彭昭鸿, 黎旦, 等. 基于MI-RRT*算法的路径规划研究[J]. 现代防御技术, 2023, 51(4): 116-125.
|
|
YU Qiang, PENG Zhaohong, LI Dan, et al. Research on Path Planning Based on MI-RRT* Algorithm [J]. Modern Defence Technology, 2023, 51(4): 116-125.
|
[3] |
姜凌峰, 李新凯, 张海, 等. 基于改进TD3算法的无人机动态环境无地图导航[J]. 航空学报,2025,46(8): 331035.
|
|
JIANG Lingfeng, LI Xinkai, ZHANG Hai, et al. Unmanned Aerial Vehicle Navigation Without Map in Dynamic Environment Based on Improved TD3 Algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2025,46(8): 331035.
|
[4] |
商园春, 赵长春, 李云庆. 一种动态环境下多无人机二维路径规划方法[J]. 信息技术与信息化, 2024(4): 204-208.
|
|
SHANG Yuanchun, ZHAO Changchun, LI Yun qing. A Two-Dimensional Path Planning Method for Multi-UAV in Dynamic Environment [J]. Information Technology and Informatization, 2024(4): 204-208.
|
[5] |
黄书召, 田军委, 乔路, 等. 基于改进遗传算法的无人机路径规划[J]. 计算机应用, 2021, 41(2): 390-397.
|
|
HUANG Shuzhao, TIAN Junwei, QIAO Lu, et al. Path Planning for Unmanned Aerial Vehicles Based on Improved Genetic Algorithm [J]. Computer Applications, 2021, 41(2): 390-397.
|
[6] |
李霞, 魏瑞轩, 周军, 等. 基于改进遗传算法的无人飞行器三维路径规划[J]. 西北工业大学学报, 2010, 28(3): 343-348.
|
|
LI Xia, WEI Ruixuan, ZHOU Jun, et al. Three-Dimensional Path Planning for Unmanned Aerial Vehicles Based on Improved Genetic Algorithm [J]. Journal of Northwestern Polytechnical University, 2010, 28(3): 343-348
|
[7] |
柴凯凯, 徐海芹, 范佳伟. DDPG改进人工势场法的无人机三维路径规划[J/OL]. 电光与控制. (2025-05-23)[2025-06-20]..
|
|
CHAI Kaikai, XU Haiqin, FAN Jiawei. UAV 3D Path Planning Based on DDPG Improved Artificial Potential Field Method [J/OL]. Electro-Optics and Control. (2025-05-23) [2025-06-20]. .
|
[8] |
李玉清, 梁忠楠, 赵衍昭, 等. 一种动态窗口法和人工势场法融合的AGV路径规划算法[J]. 科学技术与工程, 2025, 25(14): 5924-5933.
|
|
LI Yuqing, LIANG Zhongnan, ZHAO Yanzhao, et al. An AGV Path Planning Algorithm Based on the Fusion of Dynamic Window Approach and Artificial Potential Field Method [J]. Science Technology and Engineering, 2025, 25(14): 5924-5933.
|
[9] |
广鑫, 耿增显. 基于离散粒子群算法的集群无人机飞行路径规划[J]. 现代电子技术, 2025, 48(4): 119-122.
|
|
GUANG Xin, GENG Zengxian. Flight Path Planning for Swarm UAVs Based on Discrete Particle Swarm Optimization Algorithm [J]. Modern Electronics Technique, 2025, 48(4): 119-122.
|
[10] |
刘晓芬, 吴传淑, 张紫瑞, 等. 基于粒子群和蜂群算法的无人机路径规划[J]. 兵工自动化, 2025, 44(4): 107-112.
|
|
LIU Xiaofen, WU Chuanshu, ZHANG Zirui, et al. UAV Path Planning Based on Particle Swarm and Bee Colony Algorithms [J]. Ordnance Industry Automation, 2025, 44(4): 107-112.
|
[11] |
周从航, 李建兴, 石宇静, 等. 深度强化学习在无人机编队路径规划中的应用[J]. 电光与控制, 2024, 31(10): 27-33.
|
|
ZHOU Conghang, LI Jianxing, SHI Yujing, et al. Application of Deep Reinforcement Learning in UAV Formation Path Planning [J]. Optics and Control, 2024, 31(10): 27-33.
|
[12] |
邓江红. 基于深度强化学习的无人机避障路径规划方法研究[D]. 廊坊:北华航天工业学院, 2024.
|
|
DENG Jianghong. Research on Obstacle Avoidance Path Planning Method for Unmanned Aerial Vehicles Based on Deep Reinforcement Learning [D]. Langfang: Beihua University of Aeronautics and Astronautics, 2024.
|
[13] |
刘泽原, 赵文栋, 李艾静, 等. 基于信息共享的低能耗多无人机协同侦察方法[J]. 计算机仿真, 2022, 39(12): 38-43.
|
|
LIU Zeyu, ZHAO Wendong, LI Aijing, et al. Low-Energy Multi-UAV Cooperative Reconnaissance Method Based on Information Sharing [J]. Computer Simulation, 2022, 39(12): 38-43.
|
[14] |
黄翼虎, 于亚楠. 基于改进Dijkstra算法的防冲突最短路径规划研究[J]. 计算机与现代化, 2022(8): 20-24.
|
|
HUANG Yihu, YU Yanan. Anti-collision Shortest Path Planning Based on Improved Dijkstra Algorithm[J]. Computers and Modernization, 2022(8): 20-24.
|
[15] |
常绪成, 王敬宇, 李康, 等. 基于改进DWA融合算法的多无人机避障方法[J/OL]. 弹箭与制导学报.(2025-02-27)[2025-06-20]. .
|
|
CHANG Xucheng, WANG Jingyu, LI Kang, et al. A Multi-UAV Obstacle Avoidance Method Based on the Improved DWA Fusion Algorithm[J/OL]. Journal of Projectiles, Rockets, Missiles and Guidance. (2025-02-27)[2025-06-20].
|
[16] |
岳勐祺, 邹杰, 赵凯. 分布式作战的发展与关键要素分析[J]. 火力与指挥控制, 2025,50(3):9-18.
|
|
YUE Mengqi, ZOU Jie, ZHAO Kai. Development and Key Elements Analysis of Distributed Operations[J]. Fire Control & Command Control, 2025, 50(3): 9-18.
|