现代防御技术 ›› 2025, Vol. 53 ›› Issue (4): 93-104.DOI: 10.3969/j.issn.1009-086x.2025.04.010
收稿日期:
2024-09-25
修回日期:
2024-12-11
出版日期:
2025-08-28
发布日期:
2025-09-02
作者简介:
高精隆(1988—),男,陕西榆林人。工程师,硕士,研究方向为卫星导航干扰信号检测与定位、智能导航。
Jinglong GAO, Qiushi CHEN, Liang ZHANG, Chunlei PANG
Received:
2024-09-25
Revised:
2024-12-11
Online:
2025-08-28
Published:
2025-09-02
摘要:
卫星导航在军民领域取得了深入的发展,导航战成为全球军事局部冲突及大国博弈的现实问题。如何快速地检测干扰源并对其定位,为军事指挥提供有效的战场态势信息,做出更为灵活的决策进而保障己方导航信息的安全性和可靠性,成为了急需关注的现实问题。介绍了导航战的概念和无源定位技术的基本情况,分析了无源定位常用的参数估计方法,对比分析了无源定位的观测量及其数学模型和定位性能,在此基础上对卫星导航干扰源检测定位技术的发展现状及趋势进行了分析展望。
中图分类号:
高精隆, 陈秋实, 张良, 庞春雷. 基于无源定位的卫星导航干扰源定位技术综述[J]. 现代防御技术, 2025, 53(4): 93-104.
Jinglong GAO, Qiushi CHEN, Liang ZHANG, Chunlei PANG. A Review of Interference Location in Satellite Navigation Based on Passive Location Techniques[J]. Modern Defense Technology, 2025, 53(4): 93-104.
观测量 | 干扰信号格式 | 性 能 |
---|---|---|
DOA/AOA | 所有干扰信号 | 实现复杂性高,性能与干扰信号带宽无关,性能随着距离的增加而降低,需要对天线阵列元件进行相位/增益校准 |
TDOA | 宽带干扰信号 | 实现复杂度低,性能取决于干扰信号带宽,可实现更大区域内准确的定位,观测站需要精确的时间同步 |
FDOA | 窄带干扰信号 | 实现复杂度中等,要求干扰源和观测站至少有一个运动,观测站需要精确的时间和频率同步 |
RSS | 所有干扰信号 | 实现复杂度非常低,性能随距离增加而降低,稀疏网络系统性能较差,适合观测站距离较近或密集分布的场景 |
表1 不同观测量定位性能对比
Table 1 Comparison of localization performance for different observations
观测量 | 干扰信号格式 | 性 能 |
---|---|---|
DOA/AOA | 所有干扰信号 | 实现复杂性高,性能与干扰信号带宽无关,性能随着距离的增加而降低,需要对天线阵列元件进行相位/增益校准 |
TDOA | 宽带干扰信号 | 实现复杂度低,性能取决于干扰信号带宽,可实现更大区域内准确的定位,观测站需要精确的时间同步 |
FDOA | 窄带干扰信号 | 实现复杂度中等,要求干扰源和观测站至少有一个运动,观测站需要精确的时间和频率同步 |
RSS | 所有干扰信号 | 实现复杂度非常低,性能随距离增加而降低,稀疏网络系统性能较差,适合观测站距离较近或密集分布的场景 |
[1] | 辛洁, 刘利, 郭靖蕾, 等. 美军导航战的发展研究与启示[J]. 现代防御技术, 2023, 51(6): 69-76. |
XIN Jie, LIU Li, GUO Jinglei, et al. Development and Enlightenment of the U.S. Navigation Warfare[J]. Modern Defence Technology, 2023, 51(6): 69-76. | |
[2] | 贾赞杰, 于合理, 武智佳, 等. 俄乌冲突导航对抗运用分析研究[J]. 全球定位系统, 2024, 49(4): 28-33, 41. |
JIA Zanjie, YU Heli, WU Zhijia, et al. Research on the Application of Navigation Countermeasures in the Russia-Ukraine Conflict[J]. GNSS World of China, 2024, 49(4): 28-33, 41. | |
[3] | 苏珂, 吴忠望, 焦国强, 等. GPS导航战综述:进展与启示[J]. 全球定位系统, 2024, 49(6): 127-134. |
SU Ke, WU Zhongwang, JIAO Guoqiang, et al. Review of GPS Navigation Warfare: Progress and Revelation[J]. GNSS World of China, 2024, 49(6): 127-134. | |
[4] | 尼古拉斯·A 奥唐纳. 电子战辐射源检测与定位[M]. 王建涛, 张立东, 译. 北京: 清华大学出版社, 2022. |
O'DONOUGHUE N A. Emitter Detection and Geolocation for Electronic Warfare[M]. WANG Jiantao, ZHANG Lidong,Translated. Beijing: Tsinghua University Press, 2022. | |
[5] | 郭福成, 李金洲, 张敏. 无源定位原理与方法[M]. 北京: 国防工业出版社, 2021. |
GUO Fucheng, LI Jinzhou, ZHANG Min. Passive Location Theories and Methods[M]. Beijing: National Defense Industry Press, 2021. | |
[6] | 田中成, 刘聪锋. 无源定位技术[M]. 北京: 国防工业出版社, 2015. |
TIAN Zhongcheng, LIU Congfeng. Passive Locating Technology[M]. Beijing: National Defense Industry Press, 2015. | |
[7] | 胡德秀, 刘成城, 赵闯, 等. 无源测向与定位技术[M]. 北京: 科学出版社, 2022. |
HU Dexiu, LIU Chengcheng, ZHAO Chuang, et al. Passive Direction Finding and Positioning Technology[M]. Beijing: Science Press, 2022. | |
[8] | 李俊霞, 王欣, 黄高见, 等. 无源定位技术发展及其展望[J]. 无线电工程, 2024, 54(8): 1825-1846. |
LI Junxia, WANG Xin, HUANG Gaojian, et al. Development and Prospects of Passive Positioning Technology[J]. Radio Engineering, 2024, 54(8): 1825-1846. | |
[9] | 张杰. 目标辐射源多站无源定位关键技术研究[D]. 郑州: 解放军信息工程大学, 2015. |
ZHANG Jie. Multi-station Passive Localization Technology Based on Radiation Source[D]. Zhengzhou: PLA Information Engineering University, 2015. | |
[10] | 吴鹏. 基于TDOA的多站无源定位关键技术研究[D]. 长沙: 国防科技大学, 2019. |
WU Peng. Research on Key Technologies of Multi-station Passive Location Based on TDOA[D]. Changsha: National University of Defense Technology, 2019. | |
[11] | 韩欢. 基于深度学习的无源定位关键技术研究[D]. 成都: 电子科技大学, 2023. |
HAN Huan. Research on Key Technologies of Passive Localization Based on Deep Learning[D]. Chengdu: University of Electronic Science and Technology of China, 2023. | |
[12] | 侯强. 基于TDOA和FDOA的多站无源定位关键技术研究[D]. 济南: 山东大学, 2021. |
HOU Qiang. Research on Key Technologies of Multi-station Passive Localization Based on TDOA and FDOA[D]. Jinan: Shandong University, 2021. | |
[13] | 耿傲婷. 基于AOA的多站无源定位关键技术研究[D]. 南昌: 南昌大学, 2023. |
GENG Aoting. Research on Key Technologies of Multi-station Passive Location Based on Angle of Arrival[D]. Nanchang: Nanchang University, 2023. | |
[14] | 陈梁栋, 黄知涛, 王翔, 等. 基于角速度信息先验的固定无源单站直接定位方法[J]. 电子学报, 2024, 52(7): 2190-2200. |
CHEN Liangdong, HUANG Zhitao, WANG Xiang, et al. A Direct Position Determination Method by Fixed Passive Single-Station Based on Prior Angular Velocity[J]. Acta Electronica Sinica, 2024, 52(7): 2190-2200. | |
[15] | SENGIJPTA S K. Fundamentals of Statistical Signal Processing: Estimation Theory[J]. Technometrics, 1995, 37(4):465-466. |
[16] | KAY S M. 统计信号处理基础——估计与检测理论[M]. 罗鹏飞, 张文明, 刘忠, 等,译. 北京: 电子工业出版社, 2006. |
KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. LUO Pengfei, ZHANG Wenming, LIU Zhong, et al, Translated. Beijing: Publishing House of Electronics Industry, 2006. | |
[17] | VANKAYALAPATI N, KAY S, DING Quan. TDOA Based Direct Positioning Maximum Likelihood Estimator and the Cramer-Rao Bound[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1616-1635. |
[18] | DEMPSTER A G, CETIN E. Interference Localization for Satellite Navigation Systems[J]. Proceedings of the IEEE, 2016, 104(6): 1318-1326. |
[19] | CETIN E, THOMPSON R J R, DEMPSTER A G. Passive Interference Localization Within the GNSS Environmental Monitoring System (GEMS): TDOA Aspects[J]. GPS Solutions, 2014, 18(4): 483-495. |
[20] | 吴涛, 胡艳霞, 田甜, 等. GNSS干扰定位技术分析[J]. 全球定位系统, 2023, 48(5): 103-111. |
WU Tao, HU Yanxia, TIAN Tian, et al. Analysis of GNSS Interference Localization Techniques[J]. GNSS World of China, 2023, 48(5): 103-111. | |
[21] | 靳睿敏, 甄卫民, 韩超, 等. ICG IDM情况介绍及卫星导航干扰检测定位技术发展分析[J]. 全球定位系统, 2024, 49(4): 10-21. |
JIN Ruimin, ZHEN Weimin, HAN Chao, et al. Introduction of ICG IDM and Technology Analysis of GNSS Interference Detection and Localization[J]. GNSS World of China, 2024, 49(4): 10-21. | |
[22] | 胡铁乔, 张玉岐. 基于无人机小阵列天线GNSS干扰源定位方法[J]. 空天预警研究学报, 2023, 37(3): 204-208. |
HU Tieqiao, ZHANG Yuqi. GNSS Interference Source Location Method Based on Unmanned Aerial Vehicles Small Array Antenna[J]. Journal of Air & Space Early Warning Research, 2023, 37(3): 204-208. | |
[23] | 谷明月. 基于无人机平台的干扰源测向与定位技术研究[D]. 济南: 山东大学, 2023. |
GU Mingyue. Research on Direction Finding and Localization Technology of Interference Source Based on UAV Platform[D]. Jinan: Shandong University, 2023. | |
[24] | BISWAS S K, CETIN E. GNSS Interference Source Tracking Using Kalman Filters[C]∥2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). Piscataway: IEEE, 2020: 877-882. |
[25] | WANG Yue, HO K C, WANG Gang. A Unified Estimator for Source Positioning and DOA Estimation Using AOA[C]∥2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE, 2018: 3201-3205. |
[26] | AL-SADOON M A G, ASIF R, BIN-MELHA M S, et al. Low Complexity Antenna Array DOA System for Localization Applications[C]∥2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM). Piscataway: IEEE, 2018: 1-5. |
[27] | YIN Jihao, WAN Qun, YANG Shiwen, et al. A Simple and Accurate TDOA-AOA Localization Method Using Two Stations[J]. IEEE Signal Processing Letters, 2016, 23(1): 144-148. |
[28] | JEAN O, WEISS A J. Geolocation by Direction of Arrival Using Arrays with Unknown Orientation[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3135-3142. |
[29] | 郭津晶, 郎荣玲, 薛疏桐. 基于运动单站的LTE辐射源定位技术[J]. 导航定位与授时, 2024, 11(4): 85-93. |
GUO Jinjing, LANG Rongling, XUE Shutong. LTE Radiation Source Positioning Technology Based on Mobile Single Station[J]. Navigation Positioning and Timing, 2024, 11(4): 85-93. | |
[30] | 胡安翼, 王登亮, 秦炳坤, 等. 基于TDOA辐射源定位系统架构设计[J]. 全球定位系统,2024,49(1):1-7. |
HU Anyi, WANG Dengliang, QIN Bingkun, et al. Architecture Design of Radiation Source Location System Based on TDOA[J]. GNSS World of China,2024,49(1):1-7. | |
[31] | 陈奇东, 陶海红, 刘睿, 等. GNSS弱干扰TDOA定位时差估计方法[J]. 中国电子科学研究院学报, 2020, 15(2): 135-140. |
CHEN Qidong, TAO Haihong, LIU Rui, et al. Time Difference Estimation Method for TDOA Location of GNSS Weak Interference[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(2): 135-140. | |
[32] | GOTTHANS J, GOTTHANS T, NOVAK D. Improving TDOA Radar Performance in Jammed Areas through Neural Network-Based Signal Processing[J]. Sensors, 2023, 23(6): 2889. |
[33] | HANNOTIER C, HORLIN F, QUITIN F. A CFO-Assisted Algorithm for Wireless Time-Difference-of-Arrival Localization Networks: Analytical Study and Experimental Results[J]. Sensors, 2024, 24(3): 737. |
[34] | XIA Nan, XIANG Runlin, XING Baohui, et al. TDOA Based Direct Positioning of Co-channel Signals Using Cyclic Cross-Spectral Functions[J]. IEEE Communications Letters, 2024, 28(2): 303-307. |
[35] | DOU Huijing, LEI Qian, LI Wenxue, et al. A New TDOA Estimation Method in Three-Satellite Interference Localisation[J]. International Journal of Electronics, 2015, 102(5): 839-854. |
[36] | LI Jinzhou, Shouye LÜ, Liujie LÜ, et al. Joint TDOA, FDOA and PDOA Localization Approaches and Performance Analysis[J]. Remote Sensing, 2023, 15(4): 915. |
[37] | XIAO Guoyao, DONG Qianhui, LIAO Guisheng, et al. High-Precision Joint TDOA and FDOA Location System[J]. Remote Sensing, 2024, 16(4): 693. |
[38] | OUYANG Xinxin, YAO Shanfeng, WAN Qun. Multiple Signal TDOA/FDOA Joint Estimation with Coherent Integration[J]. Electronics, 2023, 12(9): 2151. |
[39] | 孙鹏. TDOA/FDOA干扰源定位技术的研究[D]. 南京: 南京邮电大学, 2020. |
SUN Peng. Research on TDOA/FDOA Interference Source Location Technology[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020. | |
[40] | HO K C, LU Xiaoning, KOVAVISARUCH L. Source Localization Using TDOA and FDOA Measurements in the Presence of Receiver Location Errors: Analysis and Solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684-696. |
[41] | HO K C, CHAN Y T. Geolocation of a Known Altitude Object from TDOA and FDOA Measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 770-783. |
[42] | HO K C, XU Wenwei. An Accurate Algebraic Solution for Moving Source Location Using TDOA and FDOA Measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453-2463. |
[43] | LIU Rui, YANG Zhiwei, CHEN Qidong, et al. Localization of GNSS Spoofing Interference Source Based on a Moving Array Antenna[J]. Remote Sensing, 2023, 15(23): 5497. |
[44] | MAGIERA J, KATULSKI R. Detection and Mitigation of GPS Spoofing Based on Antenna Array Processing[J]. Journal of Applied Research and Technology, 2015, 13(1): 45-57. |
[45] | LIU Rui, YANG Zhiwei, CHEN Qidong, et al. GNSS Multi-interference Source Centroid Location Based on Clustering Centroid Convergence[J]. IEEE Access, 2021, 9: 108452-108465. |
[46] | 苏佳, 杨泽超, 易卿武, 等. 基于遗传算法优化BP神经网络的GNSS干扰源定位技术[J]. 无线电工程, 2024, 54(5): 1175-1182. |
SU Jia, YANG Zechao, YI Qingwu, et al. GNSS Interference Source Localization Technology Based on Genetic Algorithm Optimized BP Neural Network[J]. Radio Engineering, 2024, 54(5): 1175-1182. | |
[47] | 刘智健, 姚志强, 邓敏, 等. 利用接收机载噪比测量值的GNSS干扰源定位技术[J]. 全球定位系统, 2024, 49(4): 34-41. |
LIU Zhijian, YAO Zhiqiang, DENG Min, et al. GNSS Interference Localization Technology Using the Carrier-to-Noise Ratio Measurements of the Receivers[J]. GNSS World of China, 2024, 49(4): 34-41. | |
[48] | 崔智超, 胡婧, 张剑, 等. 基于克拉美罗界加权的GNSS干扰源定位方法[J]. 陆军工程大学学报, 2024, 3(4): 18-25. |
CUI Zhichao, HU Jing, ZHANG Jian, et al. A Localization Algorithm Based on Weighted Least Squares with Cramér-Rao Bound for GNSS Jammer[J]. Journal of Army Engineering University of PLA, 2024, 3(4): 18-25. | |
[49] | 何健辉, 王梓斌, 魏兴雲, 等. 一种对卫星干扰源的高精度定位方法[J]. 通信技术, 2023, 56(2): 140-147. |
HE Jianhui, WANG Zibin, WEI Xingyun, et al. A High-Precision Positioning Method for Satellite Jamming Sources[J]. Communications Technology, 2023, 56(2): 140-147. | |
[50] | 刘清, 谢坚, 王伶, 等. 卫星导航欺骗式干扰源高精度直接定位方法[J]. 电子学报, 2022, 50(5): 1117-1122. |
LIU Qing, XIE Jian, WANG Ling, et al. High Precision Direct Position Determination Method for Satellite Navigation Spoofing[J]. Acta Electronica Sinica, 2022, 50(5): 1117-1122. | |
[51] | 任洋, 姚金杰, 赵昶淳, 等. 卫星导航多干扰源直接定位方法[J]. 计算机测量与控制, 2024, 32(4): 159-165, 173. |
REN Yang, YAO Jinjie, ZHAO Changchun, et al. Direct Position Determination of Multiple Interference Sources for Satellite Navigation[J]. Computer Measurement & Control, 2024, 32(4): 159-165, 173. |
[1] | 刘科. 低轨星座支持下的敏捷导航战概念及场景设计[J]. 现代防御技术, 2025, 53(2): 37-44. |
[2] | 云超, 谭志强, 崔建勇, 蒋攀攀, 郑腾. 导航战能力体系建设与发展建议[J]. 现代防御技术, 2024, 52(3): 26-35. |
[3] | 辛洁, 刘利, 郭靖蕾, 黄双临. 美军导航战的发展研究与启示[J]. 现代防御技术, 2023, 51(6): 69-76. |
[4] | 相飞华, 王杰贵. 固定单站无源定位可观测性及仿真分析[J]. 现代防御技术, 2021, 49(4): 72-78. |
[5] | 姜智强, 山世浩, 张恒, 黄烽. 基于相位差变化率的无源定位及误差分析[J]. 现代防御技术, 2020, 48(1): 57-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||