现代防御技术 ›› 2024, Vol. 52 ›› Issue (3): 143-150.DOI: 10.3969/j.issn.1009-086x.2024.03.018

• 综合保障性技术 • 上一篇    

快速凸包算法在发射车状态监控中的应用

余彦(), 白鹏英, 张雪峰   

  1. 北京机械设备研究所,北京 100854
  • 收稿日期:2022-12-12 修回日期:2023-01-08 出版日期:2024-06-28 发布日期:2024-07-08
  • 作者简介:余彦(1992-),男,安徽安庆人。工程师,博士,研究方向为动力学与控制。 E-mail:yuyan340826@163.com

Application of Quick Hull Algorithm in State Monitoring for Missile Launcher

Yan YU(), Pengying BAI, Xuefeng ZHANG   

  1. Beijing Institute of Machinery Equipment,Beijing 100854,China
  • Received:2022-12-12 Revised:2023-01-08 Online:2024-06-28 Published:2024-07-08

摘要:

针对当前复杂工业系统运行状态监控策略普遍存在误报警数目过多的问题,提出了一种基于快速凸包算法的发射车状态监控方法。该方法利用快速凸包算法从给定的正常历史数据中估计发射车的正常工作空间,对于新采集的发射车运行状态监控数据,如果由它们构成的工作点位于发射车的正常工作空间内,就认为发射车的状态是正常的,否则就是异常的。与基于静态阈值的方法相比,提出的方法降低了误报警数目;相较于基于隐变量的方法,提出的方法具有良好的可解释性。通过数值仿真技术,分别分析了一个2维和3维案例来评估提出的方法的性能表现。仿真结果表明,提出的方法物理意义明确,产生的误报警数目少。

关键词: 快速凸包算法, 状态监控, 误报警, 正常工作空间, 静态阈值, 隐变量

Abstract:

Aiming at the problem that there are too many false alarms in the current state monitoring strategy of complex industrial systems, a method to detect working state of missile launcher based on the quick hull algorithm is proposed. The normal working space is estimated from given historical normal data points. For a new-collected data point which reveal working state of missile launcher, if it is inside the established normal working space, the missile launcher is in the normal condition and no alarms are raised; otherwise, the missile launcher is in the abnormal condition and alarms will occur. Compared to static thresholds, the proposed method will cause fewer false alarms. The proposed method does well in explanation compared to the latent variable based methods. A two dimensional and three dimensional cases are analyzed by numerical simulation to evaluate the performance of the proposed method. The simulation results show that the physical meaning of the proposed method is clear and the number of false alarms generated is small.

Key words: quick hull algorithm, state monitoring, false alarms, normal working space, static thresholds, latent variables

中图分类号: