1 |
ZAGORSKI N. Analysis of the Military Application of Unmanned Aircraft and Main Direction for Their Development[J]. Aerospace Research in Bulgaria, 2021, 33: 237–250.
|
2 |
刘典雄, 徐煜华, 汪李峰, 等. 面向空地协同的有/无人系统自主传输技术[J]. 指挥与控制学报, 2021, 7(2): 160-166.
|
|
LIU Dian-xiong, XU Yu-hua, WANG Li-feng, et al. Self-Organizing Transmission in Air-Ground Collaborative Manned-Unmanned Systems[J]. Journal of Command and Control, 2021, 7(2): 160-166.
|
3 |
UDEANU G, DOBRESCU A, OLTEAN M. Unmanned Aerial Vehicle in Military Operations[J]. Science Research Education in the Air Force, 2016, 18(1):199-206.
|
4 |
罗德林, 徐扬, 张金鹏. 无人机集群对抗技术新进展[J]. 科技导报, 2017, 35(7): 26-31.
|
|
LUO De-lin, XU Yang, ZHANG Jin-peng. New Progresses on UAV Swarm Confrontation[J]. Science & Technology Review, 2017, 35(7): 26-31.
|
5 |
吴静, 蔡海锋, 刘俊良. 纳卡地区冲突无人机攻防运用分析及地空反无人对策建议[J]. 现代防御技术, 2021, 49(3): 13–20.
|
|
WU Jing, CAI Hai-feng, LIU Jun-liang. Analysis on the Operation of Attack and Defense of UAVs in Naka Conflict and Suggestions for Ground-to-Air Anti-UAVs[J]. Modern Defence Technology, 2021, 49(3): 13-20.
|
6 |
CUMMINGS M. Artificial Intelligence and the Future of Warfare[M]. London:Chatham House for the Royal Institute of International Affairs, 2017.
|
7 |
汤润泽, 张承龙, 李林林. 人工智能在无人战场态势预判与博弈对抗中的应用[J]. 现代防御技术, 2020, 48(5): 25-31.
|
|
TANG Run-ze, ZHANG Cheng-long, LI Lin-lin. Application of Artificial Intelligence on Situation Assessment and Game Countermeasure in Unmanned Battlefield[J]. Modern Defence Technology, 2020, 48(5): 25-31.
|
8 |
徐明兴, 林冰轩, 陈志刚, 等. 中小型无人机防御激光武器的技术途径分析[J]. 现代防御技术, 2020, 48(5): 10-15.
|
|
XU Ming-xing, LIN Bing-xuan, CHEN Zhi-gang, et al. Analysis on the Technical Approaches of Medium/Small Unmanned Aerial Vehicle Against Laser Weapon[J]. Modern Defence Technology, 2020, 48(5): 10-15.
|
9 |
黄长强. 未来空战过程智能化关键技术研究[J]. 航空兵器, 2019, 26(1): 11–19.
|
|
HUANG Chang-qiang. Research on Key Technology of Future Air Combat Process Intelligentization[J]. Aero Weaponry, 2019, 26(1): 11-19.
|
10 |
ÖZDEMIR G S. Artificial Intelligence Application in the Military: The Case of United States and China[J]. Seta Analysis, 2019,51(6):1-28.
|
11 |
FOUSE S, CROSS S, LAPIN Z J. DARPA’s Impact on Artificial Intelligence[J]. AI Magazine, Association for the Advancement of Artificial Intelligence, 2020, 41(2): 3–8.
|
12 |
邹立岩, 张明智, 荣明. 智能无人机集群概念及主要发展趋势分析[J]. 战术导弹技术, 2019(5): 1-11.
|
|
ZOU Li-yan, ZHANG Ming-zhi, RONG Ming. Analysis of Intelligent Unmanned Aircraft Systems Swarm Concept and Main Development Trend[J]. Tactical Missile Technology, 2019(5): 1-11.
|
13 |
EHRHARD T P. Air force UAV’s: The Secret History[M]. Arlington VA:Mitchell Inst for Airpower Studies, 2010.
|
14 |
ZENKO M . DoD Report to Congress on Future Unmanned Aircraft Systems Training, Operations, and Sustainability[R].Washington, DC: Department of Defense, 7-3C47E5F, 2012.
|
15 |
FAHEY K, MILLER M. Unmanned Systems Integrated Roadmap 2017-2042[R]. FY2017-2042, Department of Defense, 2017.
|
16 |
CAMBONE STEPHEN A, KRIEG KENNETH J, PACE PETER. Unmanned Aircraft Systems Roadmap: 2005-2030[R]. ADA445081, Office of the Secretary of Defense Washington, DC, 2005.
|
17 |
GUNZINGER M, REHBERG C, COHN J, et al. An Air Force for an Era of Great Power Competition[M]. Washington, DC:Center for Strategic and Budgetary Assessments, 2019.
|
18 |
程龙, 罗烈, 柴建忠. 2017年军用无人机装备技术发展回眸[J]. 科技导报, 2018, 36(4): 69–84.
|
|
CHENG Long, LUO Lie, CHAI Jian-zhong. Overview of Foreign Military UAVs' Equipment and Technology Development[J]. Science & Technology Review, 2018, 36(4): 69-84.
|
19 |
李磊, 徐月, 蒋琪, 等. 2018年国外军用无人机装备及技术发展综述[J].战术导弹技术,2019(2):1-11.
|
|
LI Lei, XU Yue, JIANG Qi, et al. New Development Trends of Military UAV Equipment and Technology in the World in 2018[J]. Tactical Missile Technology, 2019(2): 1-11.
|
20 |
FRANTZMAN S J. Drone Wars: Pioneers, Killing Machines, Artificial Intelligence, and the Battle for the Future[M]. New York: Bombardier Books, 2021.
|
21 |
HARTMANN K, STEUP C. The Vulnerability of UAVs to Cyber Attacks-An Approach to the Risk Assessment[C]∥ 5th International Conference on Cyber Conflict, Tallinn, IEEE, 2013: 1-23.
|
22 |
李鹏举, 毛鹏军, 耿乾, 等. 无人机集群技术研究现状与趋势[J]. 航空兵器, 2020, 27(4): 25–32.
|
|
LI Peng-ju, MAO Peng-jun, GENG Qian,et al . Research Status and Trend of UAV Swarm Technology[J]. Aero Weaponry, 2020,27(4):25-32.
|
23 |
马雯, 叱干小玄. 反无人机技术发展研究[J]. 航空兵器, 2020, 27(6): 19–24.
|
|
MA Wen, CHIGAN Xiao-xuan. Research on Development of Anti-UAV Technology[J]. Aero Weaponry, 2020, 27(6): 19-24.
|
24 |
JENNINGS G. USAF Initiates Phase 2 of Skyborg ‘Loyal Wingman’ Concept[EB/OL]. (2020-09-30) [2021-11-05]. .
|
25 |
汤润泽, 张承龙, 李林林, 等. 多武器跨域智能协同对空作战应用及关键技术[J]. 现代防御技术, 2021, 49(2): 26-34.
|
|
TANG Run-ze, ZHANG Cheng-long, LI Lin-lin, et al. Research on Applications and Key Technologies of Multi-Weapons in Cross-Domain Intelligent Coordination Air Combat[J]. Modern Defence Technology, 2021, 49(2): 26-34.
|
26 |
吴捷, 胡盛华, 乔莎莎, 等. “忠诚僚机”式有人/无人机协同作战概念与任务管理技术研究[J]. 航空电子技术, 2021, 52(2): 27-31.
|
|
WU Jie, HU Sheng-hua, QIAO Sha-sha, et al. Research on Combat Concept and Mission Management Technique of “Loyal Wingman” Manned/Unmanned Aerial Vehicle Collaborative[J]. Avionics Technology, 2021, 52(2): 27-31.
|
27 |
姜志杰, 杨卫丽. 美国加快导弹集群作战能力发展的分析与影响[J]. 战术导弹技术, 2020(4): 189-192.
|
|
JIANG Zhi-jie, YANG Wei-li. Analysis and Effects of U.S. Accelerating the Development of Missile Cluster Combat Capacity[J]. Tactical Missile Technology, 2020(4): 189-192.
|
28 |
LAYTON P. Algorithmic Warfare: Applying Artificial Intelligence to Warfighting[M]. Canberra, Australia:Air Power Development Centre, 2018.
|
29 |
胡利平, 梁晓龙, 柏鹏, 等. “算法战”及其在空战领域中的应用[J]. 国防科技, 2020, 41(1): 57–62.
|
|
HU Li-ping, LIANG Xiao-long, BAI Peng, et al, Research on Algorithmic Warfare and Its Application in Air Combat[J]. National Defense Technology, 2020, 41(1): 57-62.
|
30 |
周海瑞, 张臻. 美国空军先进作战管理系统及启示[J]. 指挥信息系统与技术, 2020, 11(4): 57-63.
|
|
ZHOU Hai-rui, ZHANG Zhen. U.S. Air Force Advanced Battle Management System[J]. Command Information System and Technology, 2020, 11(4): 57-63.
|
31 |
ZHANG Tao, LI Qing, ZHANG Chang-shui, et al. Current Trends in the Development of Intelligent Unmanned Autonomous Systems[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 68-85.
|