现代防御技术 ›› 2023, Vol. 51 ›› Issue (1): 107-118.DOI: 10.3969/j.issn.1009-086x.2023.01.013
收稿日期:
2022-09-14
修回日期:
2022-11-10
出版日期:
2023-02-28
发布日期:
2023-02-21
作者简介:
刘国亮 (1979-),男,内蒙巴林左旗人。副研究员,硕士,研究方向为武器装备试验总体技术、装备实战化考核。
Guoliang LIU1, Gangling JIAO2, Ying MA1, Jie HU1,3, Weijiang SHI1
Received:
2022-09-14
Revised:
2022-11-10
Online:
2023-02-28
Published:
2023-02-21
摘要:
针对弹药自身受到敌方攻击或操作不当发生意外时的安全事故以及高价值武器平台弹药的安全性问题,通过大量资料调研,在总结和分析西方军事强国弹药安全性问题研究进展、考核试验类型以及国内学者开展的相关研究基础上,详细给出了被试弹药进行跌落、子弹撞击、破片撞击、快速烤燃、慢速烤燃、殉爆、射流冲击、制动冲脱8种弹药安全性的试验考核方法,并对弹药受到刺激后的反应类型、反应等级给出了相应的考核评定方法,对我国弹药安全性研究工作提出几点建议。
中图分类号:
刘国亮, 焦纲领, 马营, 胡杰, 师维江. 弹药安全性试验技术研究进展[J]. 现代防御技术, 2023, 51(1): 107-118.
Guoliang LIU, Gangling JIAO, Ying MA, Jie HU, Weijiang SHI. Study on Safety Test Method of Ammunition[J]. Modern Defense Technology, 2023, 51(1): 107-118.
响应 | 含能材料 | 壳体 | 爆炸 | 碎片或含能材料抛射 | 其他 |
---|---|---|---|---|---|
爆轰 (I型) | 一旦反应发生,所有含能材料瞬间消耗 | 壳体发生快速的塑性变形,产生大范围高速剪切碎片 | 冲击波的幅值及时间尺度等于计算值或标定试验实测值 | 穿孔、碎裂和/或验证板塑性变形 | 地面弹坑大小与弹药含能材料含量有关 |
部分爆轰 (Ⅱ型) | 部分,但不是全部壳体发生快速的塑性变形,产生大范围高速剪切碎片 | 冲击波的幅值及时间尺度小于计算值或标定试验实测值 | 穿孔、塑性变形和/或相邻金属板碎裂; 燃尽或未燃尽的含能材料广泛分布 | 地面弹坑大小与发生爆轰的含能材料含量有关 | |
爆炸 (Ⅲ型) | 一旦反应发生,所有或部分含能材料快速燃烧 | 金属壳体碎片较大,广泛分布 | 试验测得的压力波峰值远远小于标定试验实测值 | 验证板损坏燃尽或未燃尽的含能材料广泛分布 | 造成弹坑 |
爆燃 (IV型) | 所有或部分含能材料发生燃烧 | 壳体破裂 | 压力随时间、空间变化 | 燃尽或未燃尽的含能材料抛射距离通常>15 m | 所产生推力可能将弹药推进至15 m以外 |
燃烧 (V型) | 所有或部分含能材料低压燃烧 | 壳体可能发生破裂 | 压力不明显 | 燃尽或未燃尽的含能材料抛射距离通常<15 m | 未发现产生推力的证据 |
无响应 (VI型) | 无响应 | 无响应 | 无 | 无 | 无 |
表1 弹药响应类型及等级
Table 1 Types and grades of ammunition response
响应 | 含能材料 | 壳体 | 爆炸 | 碎片或含能材料抛射 | 其他 |
---|---|---|---|---|---|
爆轰 (I型) | 一旦反应发生,所有含能材料瞬间消耗 | 壳体发生快速的塑性变形,产生大范围高速剪切碎片 | 冲击波的幅值及时间尺度等于计算值或标定试验实测值 | 穿孔、碎裂和/或验证板塑性变形 | 地面弹坑大小与弹药含能材料含量有关 |
部分爆轰 (Ⅱ型) | 部分,但不是全部壳体发生快速的塑性变形,产生大范围高速剪切碎片 | 冲击波的幅值及时间尺度小于计算值或标定试验实测值 | 穿孔、塑性变形和/或相邻金属板碎裂; 燃尽或未燃尽的含能材料广泛分布 | 地面弹坑大小与发生爆轰的含能材料含量有关 | |
爆炸 (Ⅲ型) | 一旦反应发生,所有或部分含能材料快速燃烧 | 金属壳体碎片较大,广泛分布 | 试验测得的压力波峰值远远小于标定试验实测值 | 验证板损坏燃尽或未燃尽的含能材料广泛分布 | 造成弹坑 |
爆燃 (IV型) | 所有或部分含能材料发生燃烧 | 壳体破裂 | 压力随时间、空间变化 | 燃尽或未燃尽的含能材料抛射距离通常>15 m | 所产生推力可能将弹药推进至15 m以外 |
燃烧 (V型) | 所有或部分含能材料低压燃烧 | 壳体可能发生破裂 | 压力不明显 | 燃尽或未燃尽的含能材料抛射距离通常<15 m | 未发现产生推力的证据 |
无响应 (VI型) | 无响应 | 无响应 | 无 | 无 | 无 |
序号 | 威胁形式 | 试验类别 | 试验条件 | 达标要求 |
---|---|---|---|---|
1 | 吊装、转运及飞行过程中掉落 | 跌落试验 | 没有爆炸反应,没有破裂,可按正常爆炸物处理程序进行安全处理 | |
2 | 小型武器攻击 | 子弹撞击试验 | 3发AP装甲弹,速度400~850 m/s | 不发生比V型更剧烈的反应 |
3 | 碎片弹药攻击 | 破片撞击试验 | 钢片15 g 2 600 m/s,65g 2 200 m/s | 不发生比V型更剧烈的反应 |
4 | 弹药库或运载工具油料着火 | 快速烤燃试验 | 平均温度在550~850 ℃直至反应结束,在燃烧后30 s内达到550 ℃ | 不发生比V型更剧烈的反应 |
5 | 临近弹药库或运载工具着火 | 慢速烤燃试验 | 加热速率1~3.3 ℃/h | 不发生比V型更剧烈的反应 |
6 | 在弹药库、运载工具内及武器平台弹仓内发生爆轰 | 殉爆试验 | 主发装药配置须符合要求 | 不发生比Ⅲ型更剧烈的反应 |
7 | 聚能装药攻击 | 射流冲击试验 | 聚能装药口径最大85 mm | 不发生比Ⅲ型更剧烈的反应 |
8 | 以规定的速度撞击靶板 | 制动冲脱 | 不发生比V型更剧烈的反应 |
表2 弹药的威胁形式及考核要求
Table 2 Threat forms and assessment requirements of ammunition
序号 | 威胁形式 | 试验类别 | 试验条件 | 达标要求 |
---|---|---|---|---|
1 | 吊装、转运及飞行过程中掉落 | 跌落试验 | 没有爆炸反应,没有破裂,可按正常爆炸物处理程序进行安全处理 | |
2 | 小型武器攻击 | 子弹撞击试验 | 3发AP装甲弹,速度400~850 m/s | 不发生比V型更剧烈的反应 |
3 | 碎片弹药攻击 | 破片撞击试验 | 钢片15 g 2 600 m/s,65g 2 200 m/s | 不发生比V型更剧烈的反应 |
4 | 弹药库或运载工具油料着火 | 快速烤燃试验 | 平均温度在550~850 ℃直至反应结束,在燃烧后30 s内达到550 ℃ | 不发生比V型更剧烈的反应 |
5 | 临近弹药库或运载工具着火 | 慢速烤燃试验 | 加热速率1~3.3 ℃/h | 不发生比V型更剧烈的反应 |
6 | 在弹药库、运载工具内及武器平台弹仓内发生爆轰 | 殉爆试验 | 主发装药配置须符合要求 | 不发生比Ⅲ型更剧烈的反应 |
7 | 聚能装药攻击 | 射流冲击试验 | 聚能装药口径最大85 mm | 不发生比Ⅲ型更剧烈的反应 |
8 | 以规定的速度撞击靶板 | 制动冲脱 | 不发生比V型更剧烈的反应 |
1 | 江明, 唐成, 袁宝慧. 导弹战斗部安全性试验评估[J].兵工学院, 2015, 36(7): 6-9. |
JIANG Ming, TANG Cheng, YUAN Baohui. Summary of Missile Warhead’s Safety Tests Evaluation[J]. Joumal of Sichuan Ordnance, 2015, 36(7): 6-9. | |
2 | 刘鹏翔,王兵.美国航母火灾历史及启示[J].舰船科学技术,2010,32(9):133-139. |
LIU Pengxiang, WANG Bing. History of US. Aircraft Carriers Fires and Its Revelation [J].Ship Science and Technology, 2010, 32 (9):133-139. | |
3 | WASHINGTON D C. Navy Aircraft Firefighting and Rescue Manual[M]. Naval Air Systems Command. Natops US, 2001. |
4 | 张春海.不敏感弹药,让士兵和武器更安全[J].现代军事,2006(2):54-59. |
ZHANG Chunhai. Insensitive Ammunition to Make Soldiers and Weapons Safer[J]. Modern Military,2006(2):54-59. | |
5 | 董海山 .钝感弹药的由来及重要意义[J].含能材料,2016,14(5):321-322. |
DONG Haishan. Origin and Significance of Insensitive Ammunition [J].Chinese Journal of Energetic Materials,2016,14(5):321-322. | |
6 | 范士锋, 董平, 李鑫,等. 国外海军弹药安全性研究进展[J]. 火炸药学报, 2017, 40(2): 101-106. |
FAN Shifeng, DONG Ping, LI Xin, et al. Research Progress in the Safety of Foreign Naval Ammunition[J]. Chinese Journal of Explosives & Propellants, 2017, 40(2): 101-106. | |
7 | 胡杰,杜剑英,陈桦,等.破片撞击不敏感弹药研究进展[J].兵器装备工程学报,2022,43(8):36-43. |
HU Jie, DU Jianying, CHEN Hua, et al. Research Progress of Fragment Impact Insensitive Ammunition[J].Journal of Ordnance Equipment Engineering,2022,43(8) : 36-43. | |
8 | DOD-STD-2105. Hazard Assessment Tests for Non-nuclear Munitions [S]. Special Operations Command Under the U.S. Department of Defense,1982. |
9 | MIL-STD-2105A. Hazard Assessment Tests for Non-nuclear Munitions [S]. Special Operations Command Under the U.S. Department of Defense, 1991. |
10 | MIL-STD-2105B. Hazard Assessment Tests for Non-nuclear Munitions [S]. Special Operations Command Under the U.S. Department of Defense, 1994. |
11 | MIL-STD-2105C. Hazard Assessment Tests for Non-nuclear Munitions [S]. Special Operations Command Under the U.S. Department of Defense, 2003. |
12 | MIL-STD-2105D. Hazard Assessment Tests for Non-nuclear Munitions [S]. Special Operations Command Under the U.S. Department of Defense, 2011. |
13 | STANAG 4439. Policy for Introduction and Assessment of Insensitive Munitions [S]. NATO Standardization Agency, 2010. |
14 | AOP-39(Edition 3). Guidance on the Assessment and Development of Insensitive Munitions(IM) [S]. NATO Standardization Agency,North Atlantic Treaty Organization(NATO),2010. |
15 | STANAG 4375. Safety Drop. Munition Test Procedure [S]. NATO Standardization Agency, 2010. |
16 | STANAG 4241. Bullet Attack Test for Munitions [S]. NATO Standardization Agency, 1991. |
17 | STANAG 4496. Fragment Impact, Munitions Test Procedure [S]. NATO Standardization Agency, 2004. |
18 | STANAG 4240. Liquid Fuel/External Fire, Munition test Procedure [S]. NATO Standardization Agency,2003. |
19 | STANAG 4382. Slow Heating, Munition Test Procedure [S]. NATO Standardization Agency,2002. |
20 | STANAG 4396. Symppathetic Reaction, Munition Test Procedure [S]. NATO Standardization Agency,1996. |
21 | STANAG 4526. Shaped Charge Jet, Munition Test Procedure [S]. NATO Standardization Agency,2018. |
22 | 梁晓璐, 梁争峰, 程淑杰, 等.不敏感弹药试验方法及评估标准研究进展 [J]. 飞航导弹, 2016(6): 84-87. |
LIANG Xiaolu, LIANG Zhengfeng, CHENG Shujie, et al. Research Progress on Test Methods and Evaluation Criteria of Insensitive Ammunition[J].Aerodynamic Missile Journal, 2016(6): 84-87. | |
23 | 段良雷,钱建平.某型箱装弹药跌落过程动力学特性研究[J].兵器装备工程学报,2020,41(4):37-40,185. |
DUAN Lianglei, QIAN Jianping. Study on Dynamic Characteristics of Drop Process of a Certain Type of Boxed Ammunition[J]. Journal of Ordnance Equipment Engineering,2020,41(4): 37-40,185. | |
24 | 周彬,安振涛,甄建伟,等.跌落条件下箱装弹药安全性的数值评估[J].装备环境工程,2009,6(5): 50-53,62. |
ZHOU Bin, AN Zhentao, ZHEN Jianwei, et al. Numerical Evaluation of Packaged Ammunition Security Under Condition of Dropping[J]. Equipment Environmental Engineering,2009,6(5): 50-53,62. | |
25 | 何文波,刘永峰,李宇,等.某弹药箱12米水平跌落仿真与试验分析[J].环境技术,2021(S1):130-132. |
HE Wenbo, LIU Yongfeng, LI Yu, et al. Simulation and Test Analysis of 12 m Horizontal Drop of an Ammunition Box[J]. Environmental Technology, 2021(S1):130-132. | |
26 | 李广嘉,周涛,曹玉武,等.带舱大型战斗部跌落响应数值分析[J].高压物理学报,2018,32(4):153-157. |
LI Guangjia, ZHOU Tao, CAO Yuwu, et al. Numerical Analysis of Falling Response of Large Warhead in Cabin[J].Chinese Journal of High Pressure Physics,2018,32(4):153-157. | |
27 | 王永亮, 王雨时, 李德才,等.不敏感弹药枪击试验用弹国内外对比分析 [J]. 弹箭与制导学报, 2019, 39(4): 83-88. |
WANG Yongliang, WANG Yushi, LI Decai,et al. Comparative Analysis of Cartridge for Insensitive Munition Bullet Impact Test at Domestic and Abroad[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2019, 39(4): 83-88. | |
28 | 李瑞锋,党永战,李宏岩,等.固体火箭发动机易损性试验研究[J].导弹与航天运载技术,2019(5):53-58. |
LI Ruifeng, DANG Yongzhan, LI Hongyan, et al. Experimental Study of the Solid Rocket Motor Vulnerability[J]. Missiles and Space Vehicles,2019(5):53-58. | |
29 | 吕玺,庞维强,李军强,等.HTPE钝感推进剂的子弹撞击和快速烤燃特性[J].火炸药学报,2019,42 (1):79-83. |
Xi LÜ, PANG Weiqiang, LI Junqiang, et al. Bullet Impact and Fast Cookoff Characteristics of HTPE Insensitive Solid Propellant[J]. Chinese Journal of Explosives & Propellants, 2019,42(1):79-83. | |
30 | 李金福,智小琦,范兴华.钨球及六棱钨柱破片侵彻Q235叠层靶特性研究 [J]. 火炮发射与控制学报, 2021,42(2): 28-33,39. |
LI Jinfu, ZHI Xiaoqi, FAN Xinghua. Study on the Characteristics of the Tungsten Ball and Hexagonal Tungsten Prism Fragments Penetrating Q235 Laminated Targets[J]. Journal of Gun Launch & Control, 2021,42(2): 28-33,39. | |
31 | 李广嘉, 吕永柱, 孔庆强,等. 一种高速破片加载装置设计与实验研究 [J]. 兵器装备工程学报, 2020, 41(6): 42-45. |
LI Guangjia, Yongzhu LÜ, KONG Qingqiang,et al .Design and Experiment Study of a High-Speed Fragment Loading Device[J]. Journal of Ordnance Equipment Engineering, 2020, 41(6) : 42-45. | |
32 | 胡杰, 何文卿, 刘锡金,等. 超高速破片发射系统内弹道参数设计及验证 [J]. 西安工业大学学报, 2019, 39(6): 663-668. |
HU Jie, HE Wenqing, LIU Xijin, et al. Design and Verification of Internal Ballistic Parameters of Ultra-high Speed Fragment Launching System[J]. Journal of Xi'an Technological University, 2019, 39(6): 663-668. | |
33 | 胡杰,陈桦,焦育东,等.一种高速破片加载装置设计及验证[J].西安工业大学学报,2022,42(5): 473-479. |
HU Jie, CHEN Hua, JIAO Yudong, et al. Design of a High Speed Fragment Launcher and Its Verification[J]. Journal of Xi'an Technological University,2022,42(5): 473-479. | |
34 | 戴湘晖,王可慧,沈子楷,等.侵彻弹体快速烤燃安全特性实验研究[J].爆炸与冲击,2020,40(9):3-11. |
DAI Xianghui, WANG Kehui, SHEN Zikai, et al. Experiment of Fast Cook-off Safety Characteristic for Penetrator[J]. Explosion and Shock Waves,2020,40(9):3-11. | |
35 | 肖游,智小琦,王琦.基于FDS与CFD组合的快速烤燃数值模拟[J].火炸药学报, 2002,45(4):536-543. |
XIAO You, ZHI Xiaoqi, WANG Qi. Numerical Simulation of Fast Cook-off Based on the Combination of FDS and CFD[J]. Chinese Journal of Explosives & Propellants, 2002,45(4):536-543. | |
36 | 吕子剑,申春迎,向永. 以推进剂为燃料对炸药的快速烤燃试验[C]∥中国工程物理研究院科技年报. 四川, 2005:463-464. |
Zijian LÜ, SHEN Chunying, XIANG Yong. Rapid Burning Test of Explosive with Propellant as Fuel[C]∥Annual Report of China Academy of Engineering Physics. Sichuan, 2005:463-464. | |
37 | 戴湘晖,段建,沈子楷,等.侵彻弹体慢速烤燃响应特性实验研究[J].兵工学报,2020,41(2):291- 297. |
DAI Xianghui, DUAN Jian, SHEN Zikai, et al. Experiment of Slow Cook-off Response Characteristics of Penetrator[J]. Acta Armamentarii,2020,41(2):291-297. | |
38 | 翟蓉,施坤林,邹金龙,等.引信慢速烤燃特性的等效试验方法[J].探测与控制学报,2020,42(3):1-7. |
ZHAI Rong, SHI Kunlin, ZOU Jinlong, et al. An Equivalent Method of Fuze’s Slow Cook-off Characteristic[J]. Journal of Detection & Contro, 2020,42(3):1-7. | |
39 | 李娜,吕春玲,王杰,等.低成本高效慢速烤燃试验方法研究[J].装备环境工程,2019,16(9): 18-23. |
LI Na, Chunling LÜ, WANG Jie, et al. Low Cost and High Efficiency Slow Cook-off Test Method [J]. Equipment Environmental Engineering, 2019,16(9):18-23. | |
40 | 李兴隆,吴奎先,路中华,等.叠层复合装药殉爆安全性试验及数值模拟[J].含能材料,2022,30(3):204-213. |
LI Xinglong, WU Kuixian, LU Zhonghua, et al. Sympathetic Detonation Test and Simulation of Laminated Composite Charge[J]. Chinese Journal of Energetic Materials, 2022,30 (3):204-213. | |
41 | 李金河,黄学义,傅华,等.弹药殉爆试验与反应等级评估探讨[J].装备环境工程,2019,16 (9):53-56. |
LI Jinhe, HUANG Xueyi, FU Hua, et al. Sympathetic Detonation Test and Reaction Degree Evaluation of Munitions[J]. Equipment Environmental Engineering,2019,16 (9):53-56. | |
42 | 张立建,沈飞,畅博,等.典型相似结构柱壳装药殉爆响应数值模拟[J]. 科学技术与工程,2021,21(3): 1003-1010. |
ZHANG Lijian, SHEN Fei, CHANG Bo, et al. Numerical Simulation of the Sympathetic Detonation Response of Cylindrical Shell Charge with Typical Similar Structures[J]. Science Technology and Engineering,2021,21(3): 1003-1010. | |
43 | 张俊坤,李海广,许兴春.射流对某典型钝感弹药的冲击起爆规律研究[J].计算机仿真,2014,31 (9):14-18. |
ZHANG Junkun, LI Haiguang, XU Xingchun. Research on Jet Impact Initiation Rule of Typical Insensitive Ammunition[J]. Computer Simulation,2014,31 (9):14-18. | |
44 | 宋乙丹,陈科全,路中华,等.聚能射流冲击起爆屏蔽压装PBX炸药的试验研究[J].火炸药学报,2019,42(1):69-72,78. |
SONG Yidan, CHEN Kequan, LU Zhonghua, et al. Experimental Research of the Impact Initiation of Shelled Pressed PBX Explosives by Shaped Charge Jet[J]. Chinese Journal of Explosives &Propellants,2019,42(1):69-72,78. | |
45 | 范一清,王炅,谢全民,等.聚能装药对引信的冲击试验与仿真研究[J].振动与冲击,2020,39(22): 261-267. |
FAN Yiqing, WANG Jiong, XIE Quanmin, et al. Experimental and Numerical Simulation Study on the Shaped Charge Jet Impact of a Fuze[J]. Journal of Vibration and Shock, 2020, 39(22):261-267. | |
46 | 李君智,解珍珍,杨江,等.基于火箭橇的机载弹药制动冲脱试验技术[J].弹箭与制导学报,2018, 38(3):143-146. |
LI Junzhi, XIE Zhenzhen, YANG Jiang, et al. The Technology of Braking And Inertial Running out Test for Airborne Ammunition Based on Rocket-Sled[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2018, 38(3): 143-146. | |
47 | 胡兵,王昆仑,李辉,等.反向弹道火箭橇试验方法研究[J].测试技术学报,2022,36 (2): 113-116. |
HU Bing, WANG Kunlun, LI Hui, et al, Research on the Test Method of Reverse Ballistic Rocket Sled[J]. Journal of Test and Measurement Technology,2022,36(2):113-116. | |
48 | 张洁,倪晋平,夏洪利,等.弯曲滑轨在火箭橇试验弹车分离中的应用[J].西安工业大学学报,2014,34(12):975-979. |
ZHANG Jie, NI Jinping, XIA Hongli,et al. Application of Curved Railway Track in Missile-Vehicle Separation in Rocket Sled Test[J]. Journal of Xi’an Technological University, 2014,34(12):975-979. | |
49 | STANAG4439 (edition 3). Policy for Introduction,Assessment and Testing for Insensitive Munitions [S]. NATO Standardization Agency, North Atlantic Treaty Organization (NATO),2009. |
50 | BAKER E L, PHAM J, MADSEN T, et al Shaped Charge Jet Characterization and Initiation Test Configuration for IM Threat Testing[J]. Procedia Engineering, 2013(58):58-67. |
[1] | 刘国亮, 沈永福, 胡杰, 曹鹏. G45钢破片对中大口径弹体侵彻仿真分析[J]. 现代防御技术, 2023, 51(5): 134-141. |
[2] | 陈红, 李世中, 杨超. 六分位探测引信战斗部起爆控制的建模及仿真[J]. 现代防御技术, 2022, 50(5): 140-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||