Modern Defense Technology ›› 2021, Vol. 49 ›› Issue (5): 32-44.DOI: 10.3969/j.issn.1009-086x.2021.05.005

• NAVIGATION, GUIDANCE AND CONTROL • Previous Articles     Next Articles

Design of Longitudinal Autopilot of UAV Based on Robust H Control

LI Yong, LI Shu-hao, DANG Li   

  1. Zhengzhou University of Aeronautics,School of Aeronautical Engineering,Henan Zhengzhou 450046,China
  • Received:2021-03-30 Revised:2021-06-17 Online:2021-10-20 Published:2021-11-01

基于鲁棒H控制的无人机纵向自动驾驶仪设计

李勇, 李树豪, 党利   

  1. 郑州航空工业管理学院 航空工程学院,河南 郑州 450046
  • 作者简介:李勇(1980-),男,河南确山人。工程师,博士,主要从事飞行器飞行控制技术及航空推进系统控制技术研究。通信地址:450046 河南省郑州市金水区文苑西路15号郑州航空工业管理学院 E-mail:liyongnwpu@163.com
  • 基金资助:
    河南省高等学校重点科研项目 (21A590003,21B590002);河南省重点研发与推广专项(科技攻关)(212102210342)

Abstract: In view of the expensive and time-consuming shortcomings of traditional gain scheduling technology in many UAV applications,through the six-degree-of-freedom nonlinear model of a fixed-wing UAV,under the condition of known the aerodynamic coefficient,aircraft moment of inertia and thrust coefficient,the linear parameter varying (LPV) aircraft model is derived from the six-degree-of-freedom nonlinear model by using Jacobian linearization method.The tensor-product (TP) model transformation method is used to transform the longitudinal nonlinear parameter-dependent LPV model of UAV into TP convex polyhedron model.The robust H controller design method of gain scheduling output feedback is applied to the TP convex polyhedron model,and the robust gain predictive autopilot flight control system of conventional fixed-wing UAV is designed.A full six-degree-of-freedom aircraft simulation test of the control system is carried out in MATLAB SIMULINK environment.The results show that the closed-loop control system has good command followed,interference suppression ability,good stability and robustness in the given flight envelope,which verifies the effectiveness of the proposed flight control system.

Key words: fixed-wing unmanned aerial vehicles, nonlinear mathematical model, tensor product (TP) approach, linear parameter varying (LPV) model, robust H control

摘要: 针对传统增益调度技术在许多无人机(unmanned aerial vehicle,UAV)应用中存在的昂贵和耗时的缺点,通过某型固定翼无人机的6自由度非线性模型,在已知气动系数、飞机转动惯量和推力系数的情况下,利用雅可比线性化方法从6自由度非线性模型推导出线性变参数(linear parameter varying,LPV)飞机模型。应用张量-乘积(tensor product,TP)模型变换方法将无人机纵向非线性参数依赖的LPV模型变换为TP型凸多面体模型形式,将增益调度输出反馈鲁棒H控制器设计方法应用于所得到的TP凸多面体模型,设计了常规固定翼无人机的鲁棒增益预测自动驾驶仪飞行控制系统。在MATLAB SIMULINK环境下对该控制系统进行了全六自由度的飞行器仿真试验,结果表明闭环控制系统具有良好的指令跟随性和干扰抑制能力,在定义的飞行包线范围内具有较好的稳定性和鲁棒性,验证了所提出的飞行控制系统设计方法的有效性。

关键词: 固定翼无人机, 非线性数学模型, TP方法, LPV模型, 鲁棒H控制

CLC Number: