Modern Defense Technology ›› 2023, Vol. 51 ›› Issue (5): 118-125.DOI: 10.3969/j.issn.1009-086x.2023.05.015
• INTEGRATED TEST, LAUNCH CONTROL TECHNOLOGY • Previous Articles Next Articles
Dewei SHENG, Zhen WANG, Longqi WANG, Xiaodong MA
Received:
2022-09-14
Revised:
2022-11-03
Online:
2023-10-28
Published:
2023-11-02
作者简介:
盛德卫(1987-),男,山东禹城人。高工,硕士,研究方向为弹上电气系统设计与试验技术。
CLC Number:
Dewei SHENG, Zhen WANG, Longqi WANG, Xiaodong MA. Influencing Factors of Backflow Current During Thermal Battery Activation[J]. Modern Defense Technology, 2023, 51(5): 118-125.
盛德卫, 王臻, 王龙启, 马晓东. 热电池激活过程倒灌电流影响因素研究[J]. 现代防御技术, 2023, 51(5): 118-125.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xdfyjs.cn/EN/10.3969/j.issn.1009-086x.2023.05.015
参数 | 电池1# | 电池2# | 电池3# |
---|---|---|---|
并联堆数 | 6堆并联 | 3堆并联 | 1堆 |
倒灌电流/A | 23.32 | 14.27 | 9.45 |
Table 1 Test results of parallel stacks
参数 | 电池1# | 电池2# | 电池3# |
---|---|---|---|
并联堆数 | 6堆并联 | 3堆并联 | 1堆 |
倒灌电流/A | 23.32 | 14.27 | 9.45 |
参数 | 电池1# | 电池2# |
---|---|---|
引燃条燃速/(cm·s-1) | 20~40 | 60~90 |
倒灌电流/A | 21.69 | 25.85 |
Table 2 Burning rate test results of pilot strip
参数 | 电池1# | 电池2# |
---|---|---|
引燃条燃速/(cm·s-1) | 20~40 | 60~90 |
倒灌电流/A | 21.69 | 25.85 |
参数 | 电池1# | 电池2# |
---|---|---|
加热片燃速/(cm·s-1) | 11.57 | 18.46 |
倒灌电流/A | 18.08 | 24.92 |
Table 3 Burning rate test results of heating plates
参数 | 电池1# | 电池2# |
---|---|---|
加热片燃速/(cm·s-1) | 11.57 | 18.46 |
倒灌电流/A | 18.08 | 24.92 |
电池 | 负载功率/W | R线阻/Ω | 正极电阻/Ω | 负极电阻/Ω | 温度/℃ | 地面发控电源 | 电解质 |
---|---|---|---|---|---|---|---|
1组 | 90 | 0.3 | 0.030 | 0.030 | 60 | 30 V,60 A | 低熔点电解质 |
2组 | 90 | 0.3 | 0.020 | 0.020 | 60 | 30 V,60 A | 低熔点电解质 |
3组 | 150 | 0.3 | 0.020 | 0.020 | 60 | 30 V,60 A | 低熔点电解质 |
4组 | 150 | 0.3 | 0.020 | 0.020 | 60 | 30 V,60 A | 低熔点电解质 |
5组 | 90 | 0.3 | 0.030 | 0.030 | 60 | 30 V,60 A | 低熔点电解质 |
6组 | 90 | 0.2 | 0.035 | 0.035 | 60 | 30 V,60 A | 低熔点电解质 |
7组 | 90 | 0.2 | 0.035 | 0.035 | 60 | 30 V,60 A | 低熔点电解质 |
8组 | 90 | 0.3 | 0.020 | 0.020 | 60 | 30 V,60 A | 三元电解质 |
9组 | 90 | 0.3 | 0.020 | 0.020 | 60 | 30 V,60 A | 三元电解质 |
10组 | 90 | 0.3 | 0.006 | 0.006 | 60 | 30 V,60 A | 低熔点电解质 |
Table 4 Test conditions
电池 | 负载功率/W | R线阻/Ω | 正极电阻/Ω | 负极电阻/Ω | 温度/℃ | 地面发控电源 | 电解质 |
---|---|---|---|---|---|---|---|
1组 | 90 | 0.3 | 0.030 | 0.030 | 60 | 30 V,60 A | 低熔点电解质 |
2组 | 90 | 0.3 | 0.020 | 0.020 | 60 | 30 V,60 A | 低熔点电解质 |
3组 | 150 | 0.3 | 0.020 | 0.020 | 60 | 30 V,60 A | 低熔点电解质 |
4组 | 150 | 0.3 | 0.020 | 0.020 | 60 | 30 V,60 A | 低熔点电解质 |
5组 | 90 | 0.3 | 0.030 | 0.030 | 60 | 30 V,60 A | 低熔点电解质 |
6组 | 90 | 0.2 | 0.035 | 0.035 | 60 | 30 V,60 A | 低熔点电解质 |
7组 | 90 | 0.2 | 0.035 | 0.035 | 60 | 30 V,60 A | 低熔点电解质 |
8组 | 90 | 0.3 | 0.020 | 0.020 | 60 | 30 V,60 A | 三元电解质 |
9组 | 90 | 0.3 | 0.020 | 0.020 | 60 | 30 V,60 A | 三元电解质 |
10组 | 90 | 0.3 | 0.006 | 0.006 | 60 | 30 V,60 A | 低熔点电解质 |
电池 | 负载功率/W | R线阻/Ω | 总电流A1 /A | 倒灌电流A2 /A | 电子负载电流A3 /A |
---|---|---|---|---|---|
1组 | 90 | 0.3 | 8.25 | 5.00 | 3.17 |
2组 | 90 | 0.3 | 8.75 | 5.25 | 3.33 |
3组 | 150 | 0.3 | 10.25 | 5.00 | 5.44 |
4组 | 150 | 0.3 | 10.50 | 5.00 | 5.63 |
5组 | 90 | 0.3 | 8.25 | 5.00 | 3.19 |
6组 | 90 | 0.2 | 8.25 | 5.25 | 3.10 |
7组 | 90 | 0.2 | 8.25 | 5.25 | 3.11 |
8组 | 90 | 0.3 | 9.25 | 5.75 | 3.33 |
9组 | 90 | 0.3 | 8.75 | 5.50 | 3.20 |
10组 | 90 | 0.3 | 8.25 | 5.00 | 3.20 |
Table 5 Test results of electrolyte melting rate, line resistance, and load power on missile
电池 | 负载功率/W | R线阻/Ω | 总电流A1 /A | 倒灌电流A2 /A | 电子负载电流A3 /A |
---|---|---|---|---|---|
1组 | 90 | 0.3 | 8.25 | 5.00 | 3.17 |
2组 | 90 | 0.3 | 8.75 | 5.25 | 3.33 |
3组 | 150 | 0.3 | 10.25 | 5.00 | 5.44 |
4组 | 150 | 0.3 | 10.50 | 5.00 | 5.63 |
5组 | 90 | 0.3 | 8.25 | 5.00 | 3.19 |
6组 | 90 | 0.2 | 8.25 | 5.25 | 3.10 |
7组 | 90 | 0.2 | 8.25 | 5.25 | 3.11 |
8组 | 90 | 0.3 | 9.25 | 5.75 | 3.33 |
9组 | 90 | 0.3 | 8.75 | 5.50 | 3.20 |
10组 | 90 | 0.3 | 8.25 | 5.00 | 3.20 |
1 | 何德军, 刘鸿雁. 导弹主电源技术的发展[J]. 兵器材料科学与工程, 2009, 32(1): 93-96. |
HE Dejun, LIU Hongyan. Development of Primary Battery for Missile[J]. Ordnance Material Science and Engineering, 2009, 32(1): 93-96. | |
2 | 王胜华. 热电池激活方式综述[J]. 探测与控制学报, 2011, 33(4): 51-55. |
WANG Shenghua. Summary on Thermal Battery Activation[J]. Journal of Detection & Control, 2011, 33(4): 51-55. | |
3 | 余福山, 康二维, 王军平, 等. 热电池激活回路电阻变化测试与分析[J]. 电池工业, 2021, 25(1): 21-25. |
YU Fushan, KANG Erwei, WANG Junping, et al. Measurement and Analysis of Resistance Change in Activation Circuit of Thermal Battery[J]. Chinese Battery Industry, 2021, 25(1): 21-25. | |
4 | 高俊丽, 蒋立. 热电池技术发展评述[C]∥第九届中国宇航学会空间能源学术年会论文集. 上海: 中国宇航学会, 2005: 375-383. |
GAO Junli, JIANG Li. Review on the Development of Thermal Battery Technology[C]∥The 9th Annual Conference on Space Energy of the Chinese Society of Astronautics. Shanghai: Chinese Society of Astronautics, 2005: 375-383. | |
5 | 张艳, 刘波, 赵小玲, 等. 锂系热电池电化学体系性能比较[J]. 上海航天, 2015, 32(4): 68-72. |
ZHANG Yan, LIU Bo, ZHAO Xiaoling, et al. Comparison of Electrochemical Performances for Lithium Thermal Batteries[J]. Aerospace Shanghai, 2015, 32(4): 68-72. | |
6 | 李玉民. 影响热电池电性能的因素[J]. 探测与控制学报, 2001, 23(3): 45-50. |
LI Yumin. Factors of Affecting Electric Characteristics of Thermal Battery[J]. Journal of Detection & Control, 2001, 23(3): 45-50. | |
7 | 谢翔, 刘爱军. 热电池的基本原理与应用方法[J]. 电源技术应用, 1999, 2(5): 25-27. |
XIE Xiang, LIU Aijun. The Fundemental Principles and Application Methods of Thermal Batteris[J]. Power Supply Technologies and Applications, 1999, 2(5): 25-27. | |
8 | 谢翔. 热电池在空空导弹中的应用[J]. 航空兵器, 1999, 6(3): 34-37. |
XIE Xiang. Applications of Thermal Battery in Air to Air Missile[J]. Aero Weaponry, 1999, 6(3): 34-37. | |
9 | 原勇强, 高瑞, 兰伟, 等. 热电池薄膜电极制备及其电化学性能[J]. 太赫兹科学与电子信息学报, 2015, 13(5): 833-836. |
YUAN Yongqiang, GAO Rui, LAN Wei, et al. Fabrication and Electrochemical Properties of Thin Film Electrode Materials for Thermal Batteries[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(5): 833-836. | |
10 | 吴尘凡, 许明胜, 左周. 薄膜正极在热电池中的应用探讨[J]. 电源技术, 2021, 45(4): 555-557. |
WU Chenfan, XU Mingsheng, ZUO Zhou. Study on Application of Thin Film Cathode in Thermal Battery[J]. Chinese Journal of Power Sources, 2021, 45(4): 555-557. | |
11 | 白鑫涛, 王贺伟, 汪东东, 等. 热电池激活时间影响因素探讨[J]. 电源技术, 2019, 43(12): 2064-2066. |
BAI Xintao, WANG Hewei, WANG Dongdong, et al. Discussion of Influence Factors for Thermal Battery Activation Time[J]. Chinese Journal of Power Sources, 2019, 43(12): 2064-2066. | |
12 | 邓士梅, 康博. 热电池贮存时间对激活时间影响的研究[J]. 电源技术, 2015, 39(7): 1473-1474, 1478. |
DENG Shimei, KANG Bo. Effect of Thermal Batteries Storage Time on Activation Time[J]. Chinese Journal of Power Sources, 2015, 39(7): 1473-1474, 1478. | |
13 | 刘占辰. 热电池激活时间研究[J]. 火工品, 2006(6): 28-31. |
LIU Zhanchen. Studies on Activation Time of Thermal Battery[J]. Initiators & Pyrotechnics, 2006(6): 28-31. | |
14 | 张小帅, 蔡德宇, 徐智强, 等. 小议热电池激活时间的优化设计[J]. 中国新技术新产品, 2011(2): 154-155. |
ZHANG Xiaoshuai, CAI Deyu, XU Zhiqiang, et al. Optimal Design of Activation Time of Thermal Battery[J]. China New Technologies and Products, 2011(2): 154-155. | |
15 | 邢永慧, 谢欣, 赵晋峰, 等. 高温加速贮存对热电池性能的影响[J]. 电源技术, 2012, 36(7): 999-1001. |
XING Yonghui, XIE Xin, ZHAO Jinfeng, et al. Influence of High Temperature Accelerated Storage on Properties of Thermal Battery[J]. Chinese Journal of Power Sources, 2012, 36(7): 999-1001. |
[1] | Qixin ZHANG, Shuanghou DENG, Li ZHOU, Zhenhao ZHU, Guoxu FENG. Conceptual Design and Trajectory Programming of an Intercept Missile for Hypersonic Gliding Target [J]. Modern Defense Technology, 2023, 51(5): 39-49. |
[2] | Yuyan TANG. Analysis of Threat Control Zone of US Ground-based Midcourse Defense [J]. Modern Defense Technology, 2023, 51(5): 8-14. |
[3] | Yuyan TANG. Analysis and Evaluation of Core Capabilities of US Ground-Based Midcourse Defense [J]. Modern Defense Technology, 2023, 51(3): 10-19. |
[4] | Bin WANG, Jice WANG, Ying SHANG, Xiaofei WANG, Quan WEN. Effectiveness Evaluation and Defense Strategies for Network Attacks of Air and Missile Defense System [J]. Modern Defense Technology, 2023, 51(3): 57-65. |
[5] | Jiyang WANG, Fengyu BAI, Xiaofeng SUN. Miss Distance Estimation Method for Anti-aircraft Missile Based on Principle of “Miss Distance Tube” [J]. Modern Defense Technology, 2023, 51(2): 49-54. |
[6] | Xiaodong MA, Jinglai ZHU, Min HU. Research on the Strategy of Test Items Planning for Anti-aircraft Missiles [J]. Modern Defense Technology, 2023, 51(2): 127-132. |
[7] | Yuyan TANG, Fangfang LI, Zhenyu ZHANG, Lei LI, Zhi LI. Analysis of Kill Chain and Kill Net Inside the US Ballistic Missile Defense System [J]. Modern Defense Technology, 2023, 51(1): 1-10. |
[8] | Yang LU, Junhao ZHAO, Xing ZHOU, Bin CAI, Kang DENG, Jian XUE, Weibing CHEN. Influence on System Power Supply During the Thermal Battery Activation and Improved Methods [J]. Modern Defense Technology, 2023, 51(1): 119-123. |
[9] | Meng ZHAO, Mingyu WANG, Lianjie XIE, Jian WANG, Rui QIAO. Research on Motion Characteristics of Ballistic Missile and Decoy [J]. Modern Defense Technology, 2023, 51(1): 135-144. |
[10] | Haijin HUANG, Han JI, Xiaojia LIU, Bo YANG, Ning WANG. Research on Missile Equipment Health Management System for After-Sales Support [J]. Modern Defense Technology, 2023, 51(1): 75-85. |
[11] | Jia-le GAO, Yi-zeng WANG, Dong-ya LIU, Jian GUO. Research on Anti-missile Operation Organization and Operation Application of Russian Army [J]. Modern Defense Technology, 2022, 50(6): 26-34. |
[12] | Gui-dong LI, Hai-ying LU, Zhi-wei LI, Shi-shun WEI, Ou ZHANG. An Improved Optimal Guidance Law with Angle Constraint [J]. Modern Defense Technology, 2022, 50(5): 52-58. |
[13] | Jun-liang JI, Long-yue LI, Xiao-lei YANG, Wei ZHANG. Targets Allocation Model of Muti-layer Anti-missile Cooperative Operation Based on Improved Hungarian Algorithm [J]. Modern Defense Technology, 2022, 50(5): 59-67. |
[14] | Jian-cheng ZHENG, Xian-si TAN, Zhi-guo QU, Wen-lin HE, Zhi-huai LI. Comparison of Early Warning Detection Characteristics Between Hypersonic Cruise Missile and Cruise Missile [J]. Modern Defense Technology, 2022, 50(4): 116-123. |
[15] | Dan-dan LIU, Yu-yan TANG, Yan-bin YUAN, Xiao-feng NI, Yun-jian JING. Design and Application of Health Management System for Missile Equipment [J]. Modern Defense Technology, 2022, 50(4): 140-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||