现代防御技术 ›› 2026, Vol. 54 ›› Issue (1): 30-43.DOI: 10.3969/j.issn.1009-086x.2026.01.003
收稿日期:2024-09-18
修回日期:2025-01-24
出版日期:2026-01-28
发布日期:2026-02-11
通讯作者:
费陈
作者简介:李银城(1994-),男,福建漳州人。讲师,硕士,研究方向为无人机蜂群技术、智能传感器技术及其应用。
Yincheng LI, Chen FEI, Liang ZHAO, Tianyu ZHAO, Yunke WANG
Received:2024-09-18
Revised:2025-01-24
Online:2026-01-28
Published:2026-02-11
Contact:
Chen FEI
摘要:
随着人工智能、大数据等前沿技术的快速发展,无人机蜂群逐渐成为军事领域的重要应用。其低成本、灵活性强、抗毁性高的特点,使其在现代战争,尤其是抢滩登陆等高危作战中成为理想的“零伤亡”武器。综述了国外无人机蜂群技术的研究进展,分析了各国军队在该领域的发展与应用;系统总结了抢滩登陆作战的关键影响因素,如防守方防御、气候地形、作战节奏与火力支援等;阐述了无人机蜂群在侦察评估、诱骗干扰、火力打击、通信中继和后勤保障方面的优势,构建了无人机蜂群作战体系;结合抢滩登陆的复杂环境,提出了无人机蜂群技术在自主协同、智能决策、网络对抗和持续作战能力等领域的发展建议,为未来无人机蜂群技术的创新应用提供参考。
中图分类号:
李银城, 费陈, 赵亮, 赵天宇, 王云恪. 无人机蜂群技术发展及其在登陆环境中的应用[J]. 现代防御技术, 2026, 54(1): 30-43.
Yincheng LI, Chen FEI, Liang ZHAO, Tianyu ZHAO, Yunke WANG. Development of UAV Swarm Technology and Application in Landing Environment[J]. Modern Defense Technology, 2026, 54(1): 30-43.
| 年份 | 项目名称 | 能力作用 |
|---|---|---|
| 2005 | 近战隐蔽一次性自主无人机[ | 空中投送,一次性、飞盘大小、无动力、装有特殊的声学、气象和化学检测传感器、主要对战场数据收集 |
| 2007 | 编群战术空间计划 | 研究无人机协同作战,涵盖战场侦察、电子战、心理战、火力及战术牵制,旨在提升作战效能与灵活性 |
| 2014 | 拒止环境协同作战[ | 开发模块化软件系统架构和智能控制算法使蜂群同时完成自主/协同作战任务,提升拒止环境协同打击能力 |
| 2014 | 体系集成技术和试验 | 将战斗机的能力分散到大量的小型平台上,平台之间数据共享、协同作战。 |
| 2014 | “灰山鹑”[ | 空中投送,以成本较低的3D打印方式制造,由战斗机搭载和发射、在空中自行编组,自主协同作战 |
| 2015 | 低成本无人机蜂群[ | 使用发射管快速发射大量可进行集群飞行、自主协同的小型折叠翼无人机,具备侦察监视、吸引火力、集群攻击能力 |
| 2015 | “郊狼” | 携带光电红外传感器,集群空中监视,护航,饱和攻击 |
| 2015 | “忠诚僚机”[ | 无人机作为最忠诚的僚机,伴飞在执行任务的有人机旁,由无人机执行高危任务,保证有人机人员安全 |
| 2015 | 快速轻型自主性 | 开发先进的自主算法,在建筑物、丛林、地震灾难环境下,还能完成任务 |
| 2015 | “小精灵”[ | 无人机的空中发射与回收 |
| 2017 | 进攻性蜂群使能战术[ | 运用超过250个无人系统,实现城市环境中的高效协同作战任务执行 |
| 2020 | 超级蜂群 | 由水面、水下和空中多模式无人系统组成,无人系统平台可在不同域之间随意切换,规模超过10 000艘/架,最大可达到100万架。拥有压倒性数量优势的群体,从而彻底瘫毁对手的态势感知、判断决策能力 |
| 2020 | 空射效应 | 聚焦开发小型(质量23~45 kg)和大型质量79~102 kg)两类空射无人机、采用折叠翼飞行器进行空中发射,自主集群 |
| 2018 | “天空博格人” | 从简单算法到空域内飞行和控制,再到更复杂的、可以完成某些任务的人工智能算法,与其他有人战斗机、轰炸机等协同使用 |
| 2023 | 大规模制造 自主系统 | 采用3D打印技术,能够大规模制造蜂群无人机,提高生产效率,降低生产成本,同时能够对无人机的设计进行快速修改,以适应不同的任务需求 |
表1 美军无人机蜂群研究情况
Table 1 Research on U.S.military UAV swarm
| 年份 | 项目名称 | 能力作用 |
|---|---|---|
| 2005 | 近战隐蔽一次性自主无人机[ | 空中投送,一次性、飞盘大小、无动力、装有特殊的声学、气象和化学检测传感器、主要对战场数据收集 |
| 2007 | 编群战术空间计划 | 研究无人机协同作战,涵盖战场侦察、电子战、心理战、火力及战术牵制,旨在提升作战效能与灵活性 |
| 2014 | 拒止环境协同作战[ | 开发模块化软件系统架构和智能控制算法使蜂群同时完成自主/协同作战任务,提升拒止环境协同打击能力 |
| 2014 | 体系集成技术和试验 | 将战斗机的能力分散到大量的小型平台上,平台之间数据共享、协同作战。 |
| 2014 | “灰山鹑”[ | 空中投送,以成本较低的3D打印方式制造,由战斗机搭载和发射、在空中自行编组,自主协同作战 |
| 2015 | 低成本无人机蜂群[ | 使用发射管快速发射大量可进行集群飞行、自主协同的小型折叠翼无人机,具备侦察监视、吸引火力、集群攻击能力 |
| 2015 | “郊狼” | 携带光电红外传感器,集群空中监视,护航,饱和攻击 |
| 2015 | “忠诚僚机”[ | 无人机作为最忠诚的僚机,伴飞在执行任务的有人机旁,由无人机执行高危任务,保证有人机人员安全 |
| 2015 | 快速轻型自主性 | 开发先进的自主算法,在建筑物、丛林、地震灾难环境下,还能完成任务 |
| 2015 | “小精灵”[ | 无人机的空中发射与回收 |
| 2017 | 进攻性蜂群使能战术[ | 运用超过250个无人系统,实现城市环境中的高效协同作战任务执行 |
| 2020 | 超级蜂群 | 由水面、水下和空中多模式无人系统组成,无人系统平台可在不同域之间随意切换,规模超过10 000艘/架,最大可达到100万架。拥有压倒性数量优势的群体,从而彻底瘫毁对手的态势感知、判断决策能力 |
| 2020 | 空射效应 | 聚焦开发小型(质量23~45 kg)和大型质量79~102 kg)两类空射无人机、采用折叠翼飞行器进行空中发射,自主集群 |
| 2018 | “天空博格人” | 从简单算法到空域内飞行和控制,再到更复杂的、可以完成某些任务的人工智能算法,与其他有人战斗机、轰炸机等协同使用 |
| 2023 | 大规模制造 自主系统 | 采用3D打印技术,能够大规模制造蜂群无人机,提高生产效率,降低生产成本,同时能够对无人机的设计进行快速修改,以适应不同的任务需求 |
| [1] | 胡杭, 杨健, 陆皖麟, 等. 无人机蜂群在渡海登陆(岛)作战中的应用研究[J]. 国防科技, 2020, 41(2): 107-112. |
| HU Hang, YANG Jian, LU Wanlin, et al. Research on the Application of UAV Swarm in the Sea Crossing Landing (Island) Operation[J]. National Defense Technology, 2020, 41(2): 107-112. | |
| [2] | STRACHAN H. D-Day and the Future of Amphibious Operations[J]. The RUSI Journal, 2024, 169(3): 10-15. |
| [3] | 费陈, 赵亮, 孙许可, 等. 无人机蜂群技术发展研究[J]. 火炮发射与控制学报, 2024, 45(2): 50-60. |
| FEI Chen, ZHAO Liang, SUN Xuke, et al. Research on the Development of UAV Swarm Technologies[J]. Journal of Gun Launch & Control, 2024, 45(2): 50-60. | |
| [4] | MCCULLOUGH A. The Looming Swarm[J]. Air Force Magazine, 2019, 102(4): 1-4. |
| [5] | 赵齐民, 陈晨. 舰载无人机集群系统作战构想[J]. 指挥控制与仿真, 2019, 41(5): 1-6. |
| ZHAO Qimin, CHEN Chen. Combat Concept for Future Naval UAV Cluster System[J]. Command Control & Simulation, 2019, 41(5): 1-6. | |
| [6] | LIU Weixin, MA Haijun, DING Yanyan, et al. Research on Operational Capability and Countermeasures of the U.S. UAV Swarm[C]∥Man-Machine-Environment System Engineering: Proceedings of the 21st International Conference on MMESE. Singapore: Springer Singapore, 2022: 347-352. |
| [7] | ZHOU Yongkun, RAO Bin, WANG Wei. UAV Swarm Intelligence: Recent Advances and Future Trends[J]. IEEE Access, 2020, 8: 183856-183878. |
| [8] | 王瑞杰, 王得朝, 丰璐, 等. 国外无人机蜂群作战样式进展及反蜂群策略研究[J]. 现代防御技术, 2023, 51(4): 1-9. |
| WANG Ruijie, WANG Dezhao, FENG Lu, et al. Research Progress and Countermeasures Against UAV Swarm Operations Abroad[J]. Modern Defence Technology, 2023, 51(4): 1-9. | |
| [9] | 胡杰, 陈桦, 付宇, 等. 无人机蜂群技术现状及反蜂群应对策略[J]. 飞航导弹, 2020(9): 32-36. |
| HU Jie, CHEN Hua, FU Yu, et al. UAV Swarm Technology Status And Anti-Bee Swarm Coping Strategies[J]. Aerodynamic Missile Journal, 2020(9): 32-36. | |
| [10] | 于威, 侯学隆. 从纳卡冲突看无人机作战运用[J]. 舰船电子工程, 2022, 42(10): 8-12. |
| YU Wei, HOU Xuelong. Application of Unmanned Aerial Vehicles in Nagorno-Karabakh Conflict[J]. Ship Electronic Engineering, 2022, 42(10): 8-12. | |
| [11] | 刘施阳, 师帅. 纳卡冲突中无人机的应用与启示[J]. 兵工自动化, 2021, 40(11): 43-45, 59. |
| LIU Shiyang, SHI Shuai. Application and Enlightenment of UAV in NAKA Conflict[J]. Ordnance Industry Automation, 2021, 40(11): 43-45, 59. | |
| [12] | 王建, 李超, 韦卓, 等. 无人蜂群作战特点与发展趋势分析[J]. 舰船电子工程, 2023, 43(12): 1-5. |
| WANG Jian, LI Chao, WEI Zhuo, et al. Analysis on the Characteristics and Development Trend of UAV Buzzer Combat[J]. Ship Electronic Engineering, 2023, 43(12): 1-5. | |
| [13] | 缪炜星, 罗银, 顾嘉琪, 等. 俄乌冲突中无人机ISR的运用及启示[J]. 无线电工程, 2023, 53(7): 1693-1699. |
| MIAO Weixing, LUO Yin, GU Jiaqi, et al. Application and Enlightenment of UAV ISR in the Russia-Ukraine Conflict[J]. Radio Engineering, 2023, 53(7): 1693-1699. | |
| [14] | BLAKCORI N, STATHAKIS L I, KOUTSOUKOS L D, et al. The Evolving UAS Threat: Lessons from the Russian-Ukrainian War Since 2022 on Future Air Defence Challenges and Requirements[J]. NATO, Integrated Air and Missile Defence Center of Excellence, 2024: 1-18. |
| [15] | 兰顺正. 乌克兰上空的"无人机大战"[J]. 世界知识, 2022(21): 70-71. |
| LAN Shunzheng. The 'UAV War' over Ukraine[J]. World Affairs, 2022(21): 70-71. | |
| [16] | ANNEPU V, RAJESH A. Implementation of an Efficient Artificial Bee Colony Algorithm for Node Localization in Unmanned Aerial Vehicle Assisted Wireless Sensor Networks[J]. Wireless Personal Communications, 2020, 114(3): 2663-2680. |
| [17] | ZHU Xiaoning. Analysis of Military Application of UAV Swarm Technology[C]∥2020 3rd International Conference on Unmanned Systems (ICUS). Piscataway: IEEE, 2020: 1200-1204. |
| [18] | XU D, CHEN G. Autonomous and Cooperative Control of UAV Cluster with Multi-agent Reinforcement Learning[J]. The Aeronautical Journal, 2022, 126(1300): 932-951. |
| [19] | 费陈, 张帆, 赵亮. 无人机集群反制技术发展研究[J]. 火炮发射与控制学报, 2025, 46(2): 1-9. |
| FEI Chen, ZHANG Fan, ZHAO Liang. Research on the Development of Unmanned Aerial Vehicle Swarm Counterattack Technology[J]. Journal of Gun Launch & Control, 2025, 46(2): 1-9. | |
| [20] | 刘磊娜. 美进行“沉默蜂群”无人技术测试[N]. 中国国防报, 2024-08-14(4). |
| LIU Leina. The United States Conducted a 'Silent Swarm' Unmanned Technology Test[N]. China National Defense News, 2024-08-14(4). | |
| [21] | 吕震华, 高亢. 美国无人集群城市作战应用发展综述[J]. 中国电子科学研究院学报, 2020, 15(8): 738-745. |
| Zhenhua LÜ, GAO Kang. Review of the Development of Drone Swarm Urban Combat Applications in the USA[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(8): 738-745. | |
| [22] | 张邦楚, 廖剑, 匡宇, 等. 美国无人机集群作战的研究现状与发展趋势[J]. 航空兵器, 2020, 27(6): 7-12. |
| ZHANG Bangchu, LIAO Jian, KUANG Yu, et al. Research Status and Development Trend of the United States UAV Swarm Battlefield[J]. Aero Weaponry, 2020, 27(6): 7-12. | |
| [23] | EDWARDS D J, KAHN A D, HEINZEN S B, et al. CICADA Flying Circuit Board Unmanned Aerial Vehicle[C]∥2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: AIAA 2018-1008. |
| [24] | DYNDAL G L, BERNTSEN T A, REDSE-JOHANSEN S. Autonomous Military Drones-No Longer Science Fiction[J]. Romanian Military Thinking, 2017(2): 75-83. |
| [25] | 焦士俊, 王冰切, 刘剑豪, 等. 国内外无人机蜂群研究现状综述[J]. 航天电子对抗, 2019, 35(1): 61-64. |
| JIAO Shijun, WANG Bingqie, LIU Jianhao, et al. Review of Drone Swarm Research at Home and Abroad[J]. Aerospace Electronic Warfare, 2019, 35(1): 61-64. | |
| [26] | Office of Naval Research. LOCUST: Autonomous, Swarming UAVs Fly into the Future[EB/OL]. (2015-04-14) [2024-12-19]. |
| [27] | 马帅帅, 钱叶魁. 美军无人机蜂群作战运用及反制分析[J]. 舰船电子工程, 2022, 42(8): 1-3, 25. |
| MA Shuaishuai, QIAN Yekui. Analysis of U.S. Army UAV Swarm Operations and Countermeasures[J]. Ship Electronic Engineering, 2022, 42(8): 1-3, 25. | |
| [28] | 费陈, 张帆, 赵亮, 等. 有人-无人机协同技术研究[J]. 火炮发射与控制学报, 2024, 45(6): 6-14. |
| FEI Chen, ZHANG Fan, ZHAO Liang, et al. Research on MAVs-UAVs Cooperative Technology[J]. Journal of Gun Launch & Control, 2024, 45(6): 6-14. | |
| [29] | DANIEL P. Gremlins [EB/OL]. (2014-06-09) [2014-06-09]. |
| [30] | Force Air. DARPA Sign Gremlins MOU as Service Plans Future of Small UAV[J]. Inside the Air Force, 2016, 27(43): 6-7. |
| [31] | DARPA. Collaborative Operations in Denied Environment(CODE)[EB/OL]. (2014-04-25) [2019-11-14]. . |
| [32] | 董宇, 高敏, 张悦, 等. 美军蜂群无人机研究进展及发展趋势[J]. 飞航导弹, 2020(9): 37-42. |
| DONG Yu, GAO Min, ZHANG Yue, et al. Research Progress and Development Trend of U.S.Army Swarm UAV[J]. Aerodynamic Missile Journal, 2020(9): 37-42. | |
| [33] | WRITERS S. Teams Test Swarm Autonomy in Second Major OFFSET Field Experiment[EB/OL]. (2019-08-12) [2019-08-12]. . |
| [34] | SAUTER J A, BIXLER K. Design of Unmanned Swarm Tactics for an Urban Mission[C]∥Unmanned Systems Technology XXI. Bellingham: SPIE, 2019: 110210K. |
| [35] | 李磊, 王彤, 胡勤莲, 等. DARPA拒止环境中协同作战项目白军网络研究[J]. 航天电子对抗, 2018, 34(6): 54-59. |
| LI Lei, WANG Tong, HU Qinlian, et al. White Force Network in DARPA CODE Program[J]. Aerospace Electronic Warfare, 2018, 34(6): 54-59. | |
| [36] | 李磊, 王彤, 蒋琪. 美国CODE项目推进分布式 协同作战发展[J]. 无人系统技术, 2018, 1(3): 59-66. |
| LI Lei, WANG Tong, JIANG Qi. DARPA CODE Program Promotes the Development of Distributed Collaborative Operations[J]. Unmanned Systems Technology, 2018, 1(3): 59-66. | |
| [37] | 杨中英, 王毓龙, 赖传龙. 无人机蜂群作战发展现状及趋势研究[J]. 飞航导弹, 2019(5): 34-38. |
| YANG Zhongying, WANG Yulong, LAI Chuanlong. Research on the Development Status And Trend Of Uav Swarm Operation[J]. Aerodynamic Missile Journal, 2019(5): 34-38. | |
| [38] | 赵亮, 费陈, 贺拥亮. 基于城市环境下无人机集群航迹规划发展研究[J]. 火炮发射与控制学报, 2024, 45(5): 96-104, 111. |
| ZHAO Liang, FEI Chen, HE Yongliang. Research on the Development of UAV Swarm Trajectory Planning Based on Urban Environment[J]. Journal of Gun Launch & Control, 2024, 45(5): 96-104, 111. | |
| [39] | 刘宗林. 俄军无人机作战运用研究[D]. 长沙: 国防科技大学, 2021. |
| LIU Zonglin. Russian Army Study of UAV Operational Use[D]. Changsha: National University of Defense Technology, 2021. | |
| [40] | 柳玉鹏. 俄为空天军研发“蜂群”作战无人机[N]. 中国国防报, 2021-03-23(4). |
| LIU Yupeng. Russia Develops 'Swarm' Combat Drones for the Air and Space Force[N]. China National Defense News, 2021-03-23(4). | |
| [41] | 徐同乐, 刘方, 肖玉杰, 等. 国外无人机蜂群作战典型战例及发展趋势[J]. 中国电子科学研究院学报, 2023, 18(10): 946-951. |
| XU Tongle, LIU Fang, XIAO Yujie, et al. Operational Application and Technology Development of Foreign UAV Swarm[J]. Journal of China Academy of Electronics and Information Technology, 2023, 18(10): 946-951. | |
| [42] | 刘箴, 吴馨远, 许洁心. 无人机集群作战系统的新发展及趋势分析[J]. 弹箭与制导学报, 2022, 42(6): 32-45. |
| LIU Zhen, WU Xinyuan, XU Jiexin. New Development and Trend Analysis of UAV Swarming Operation System[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2022, 42(6): 32-45. | |
| [43] | 张路, 邓静, 邵正途. 俄军有人机与无人机协同作战分析及启示[J]. 舰船电子对抗, 2022, 45(3): 1-6. |
| ZHANG Lu, DENG Jing, SHAO Zhengtu. Analysis and Enlightenment of Manned and Unmanned Aerial Vehicles Cooperative Operation for Russian Army[J]. Shipboard Electronic Countermeasure, 2022, 45(3): 1-6. | |
| [44] | 沈林成, 张庆杰, 王林, 等. 美国及欧洲无人作战飞机计划发展[J]. 火力与指挥控制, 2009, 34(10): 8-14. |
| SHEN Lincheng, ZHANG Qingjie, WANG Lin, et al. The Evolution of Unmanned Combat Aerial Vehicle Projects in U.S. and Europe[J]. Fire Control & Command Control, 2009, 34(10): 8-14. | |
| [45] | 张强. 土耳其新式自杀无人机或可撕开“铠甲”[N]. 科技日报, 2020-07-01(006). |
| ZHANG Qiang. Turkey 's New Suicide Drones Or Can be Ripped off 'Armor'[N]. Science and Technology Daily, 2020-07-01(006). | |
| [46] | 王玉杰, 邓小龙, 高显忠. 自杀式无人机系统与作战运用现状[J]. 国防科技, 2023, 44(2): 90-98. |
| WANG Yujie, DENG Xiaolong, GAO Xianzhong. Current Situation of Suicide Drone Systems and Their Combat Applications[J]. National Defense Technology, 2023, 44(2): 90-98. | |
| [47] | 欧继洲, 陈军, 李浩成. 巡飞弹可用动力形式的技术概述与发展趋势[J]. 兵器装备工程学报, 2018, 39(7): 61-66. |
| Jizhou OU, CHEN Jun, LI Haocheng. Technical Overview and Development Trends of Propulsion Systems for Loitering Munitions[J]. Journal of Sichuan Ordnance, 2018, 39(7): 61-66. | |
| [48] | 谷康. 外军无人蜂群作战概念研究进展及分析[J]. 航空兵器, 2022, 29(1): 52-57. |
| GU Kang. Research Progress and Development Analysis of Foreign Army Drone Swarm Operation[J]. Aero Weaponry, 2022, 29(1): 52-57. | |
| [49] | 徐凯. 未来联合登陆破障需要把握的几个问题[J]. 国防科技, 2020, 41(5): 9-13. |
| XU Kai. Several Problems to Be Solved for Obstacle Breaking in Future Joint Landing Operations[J]. National Defense Technology, 2020, 41(5): 9-13. | |
| [50] | 陈峰, 王飞, 陈泽, 等. 面向岛礁夺控作战的海军陆战队作战编成研究[J]. 中国电子科学研究院学报, 2020, 15(11): 1086-1089. |
| CHEN Feng, WANG Fei, CHEN Ze, et al. Research on Island Seizing Control Operation Oriented Marine Corps Combat Composition[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(11): 1086-1089. | |
| [51] | 孙旭光, 邱思聪, 李钊, 等. 未来两栖作战中智能化无人装备的应用展望[J]. 兵器装备工程学报, 2022, 43(增01): 7-10. |
| SUN Xuguang, QIU Sicong, LI Zhao, et al. Application Prospect of Intelligent Unmanned Equipment in Future Amphibious Operations[J]. Journal of Ordnance Equipment Engineering, 2022, 43(S01): 7-10. | |
| [52] | 张学明, 张书启. 解读美国空军新版小型无人机发展路线图[J]. 国防科技, 2016, 37(4): 81-84. |
| ZHANG Xueming, ZHANG Shuqi. A Study on the New SUAS Roadmap of USAF[J]. National Defense Technology, 2016, 37(4): 81-84. | |
| [53] | HAO Q, LI W Z, QIU Z K, et al. Research on Anti UAV Swarm System in Prevention of the Important Place[J]. Journal of Physics: Conference Series, 2020, 1507(5): 052020. |
| [54] | 张皓, 吴虎胜, 彭强. "低慢小"无人机反制装备及关键技术发展需求综述[J]. 航空兵器, 2022, 29(5): 43-52. |
| ZHANG Hao, WU Husheng, PENG Qiang. Summary of Development Requirements of "Low, Slow and Small" UAV Countermeasure Equipment and Key Technologies[J]. Aero Weaponry, 2022, 29(5): 43-52. | |
| [55] | HAMILTON T, OCHMANEK D A. Operating Low-Cost, Reusable Unmanned Aerial Vehicles in Contested Environments: Preliminary Evaluation of Operational Concepts[EB/OL]. (2020-05-11) [2020-05-11]. . |
| [56] | 陈镜. 无人机蜂群作战特点和对抗体系设想[J]. 无线电工程, 2020, 50(7): 586-591. |
| CHEN Jing. The Operational Characteristics of Drone Swarm and the Conception of Countermeasure System[J]. Radio Engineering, 2020, 50(7): 586-591. | |
| [57] | 刘海龙, 梁恒. 登陆破障装备技术发展应用述评[J]. 国防科技, 2020, 41(5): 14-18. |
| LIU Hailong, LIANG Heng. The Development Characteristics and Trend of Landing Obstacle Breaking Equipment Technology[J]. National Defense Technology, 2020, 41(5): 14-18. | |
| [58] | PHAM L V. UAV Swarm Attack: Protection System Alternatives for Destroyers[D]. Monterey: Naval Postgraduate School, 2012. |
| [59] | 毛允杰, 李云果, 吴林波. 无人机使用助力现代联合登岛(礁)作战[J]. 国防科技, 2018, 39(5): 104-107. |
| MAO Yunjie, LI Yunguo, WU Linbo. Use of Unmanned Aerial Vehicles ( UAV) to Help Fight the Modern United Landing[J]. National Defense Technology, 2018, 39(5): 104-107. | |
| [60] | CEVIK P, KOCAMAN I, AKGUL A S, et al. The Small and Silent Force Multiplier: A Swarm UAV-Electronic Attack[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1): 595-608. |
| [61] | 史俊斌, 王禹涵. “灯光秀”中展绝技: 仿萤火虫通信无人机[N]. 科技日报, 2024-05-13(003). |
| SHI Junbin, WANG Yuhan. 'Light Show': Firefly-like Communication UAV[N]. Science and Technology Daily, 2024-05-13(003). | |
| [62] | 杨艺, 汪元昌, 刘宝新. 诺曼底登陆作战港口运用问题研究[J]. 国防交通工程与技术, 2023, 21(5): 1-4. |
| YANG Yi, WANG Yuanchang, LIU Baoxin. A Study on Application of the Port in Normandy-Landing Operation[J]. Traffic Engineering and Technology for National Defence, 2023, 21(5): 1-4. |
| [1] | 秦钰, 柴华, 杨傅云翔, 白珍. 高功率微波反无人机蜂群的部署优化方法[J]. 现代防御技术, 2025, 53(6): 46-59. |
| [2] | 刘男. 基于改进PROMETHEE的无人机蜂群威胁评估方法[J]. 现代防御技术, 2025, 53(5): 92-98. |
| [3] | 费陈, 赵亮, 李银城, 王树泉, 段正裕. 基于MR-WPA的无人机蜂群多目标打击任务分配[J]. 现代防御技术, 2025, 53(3): 1-10. |
| [4] | 吴润泽, 彭维仕, 马医选. 基于改进TOPSIS法的反无人机蜂群系统作战效能评估[J]. 现代防御技术, 2025, 53(1): 63-72. |
| [5] | 王瑞杰, 王得朝, 丰璐, 赵正党, 陈浙梁. 国外无人机蜂群作战样式进展及反蜂群策略研究[J]. 现代防御技术, 2023, 51(4): 1-9. |
| [6] | 李晶晶, 罗晨旭, 黄维. “捕蜂”——低空近程反无人机蜂群体系构想[J]. 现代防御技术, 2020, 48(4): 16-22. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||