现代防御技术 ›› 2025, Vol. 53 ›› Issue (1): 37-44.DOI: 10.3969/j.issn.1009-086x.2025.01.004
收稿日期:
2023-11-24
修回日期:
2024-02-26
出版日期:
2025-02-28
发布日期:
2025-02-27
作者简介:
姜涛(1984-)黑龙江哈尔滨人。研究员,博士,研究方向为武器系统总体技术。
基金资助:
Received:
2023-11-24
Revised:
2024-02-26
Online:
2025-02-28
Published:
2025-02-27
摘要:
精确空投系统的发展带来了军事补给的根本性变革,实现了装备、军需品适时、适地、适量的补给,在战略和战术层次上全面提高了部队的部署和保障能力。根据精确空投伞降系统类型对国内外精确空投系统及关键技术的研究现状进行了阐述与分析,同时对影响精确空投系统补给能力关键技术的研究趋势进行了展望。
中图分类号:
姜涛, 鲁航, 田德宇. 精确空投系统研究进展及趋势[J]. 现代防御技术, 2025, 53(1): 37-44.
Tao JIANG, Hang LU, Deyu TIAN. Research Progress and Trend on Precision Airdrop System[J]. Modern Defense Technology, 2025, 53(1): 37-44.
1 | 兰文昌, 王中阳, 王申奥. 无伞精确空投模式下飘带试验研究[J]. 南京航空航天大学学报, 2021, 53(2): 188-193. |
LAN Wenchang, WANG Zhongyang, WANG Shenao. Experimental Study on Ribbons in Parachuteless Precise Airdrop Mode[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(2): 188-193. | |
2 | GILLES B, HICKEY M, KRAINSKI W. Flight-Testing of a Low-Cost Precision Aerial Delivery System[C]∥18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005: AIAA 2005-1651. |
3 | BROWN G, HAGGARD R, ALMASSY R, et al. The Affordable Guided Airdrop System (AGAS)[C]∥15th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1999: AIAA 1999-1742. |
4 | 周文雅, 马瑞鑫, 胡欣涵, 等. 圆形降落伞下降轨迹控制研究[J]. 兵器装备工程学报, 2021, 42(1): 26-30. |
ZHOU Wenya, MA Ruixin, HU Xinhan, et al. Research on Circular Parachute Descent Trajectory Control[J]. Journal of Ordnance Equipment Engineering, 2021, 42(1): 26-30. | |
5 | HENRY M, LAFOND K, NOETSCHER G, et al. Development of 2,000-10,000lb Improved Container Delivery System[C]∥20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009: AIAA 2009-2909. |
6 | KAESEMEYER S L. Testing of Guided Parafoil Cargo Delivery Systems[C]∥18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005: AIAA 2005-1668. |
7 | MCCANN S, RICCI W S, WENDT T, et al. Leaflet Delivery System[C]∥17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003: AIAA 2003-2139. |
8 | GEORGE S, CARTER D, BERLAND J C, et al. The Dragonfly 4,500 kg Class Guided Airdrop System[C]∥Infotech@Aerospace. Reston: AIAA, 2005: AIAA 2005-7095. |
9 | STRONG T, MCGRATH J, BENNEY R, et al. The SCREAMER Airdrop Systems for Precision Airdrop of 1,000 and 4,500 kg Class Payloads[C]∥Infotech@Aerospace. Reston: AIAA, 2005: AIAA 2005-7094. |
10 | BEERTHUIZEN P G, WEGEREEF J W. The Spades (Smart Parafoil Autonomous Delivery System) Precision Airdrop System[C]∥DASIA 2011-Data Systems In Aerospace. [S.l. : s.n.], 2011: 694. |
11 | CARTER D, SINGH L, WHOLEY L, et al. Band-Limited Guidance and Control of Large Parafoils[C]∥20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009: AIAA 2009-2981. |
12 | DUNKER S, BERLAND J C. Modularity Concepts for a 30,000 lb Capacity Ram-Air Parachute[C]∥19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2007: AIAA 2007-2515. |
13 | CALISE A J, PRESTON D. Design of a Stability Augmentation System for Airdrop of Autonomous Guided Parafoils[C]∥AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2006: AIAA 2006-6776. |
14 | CALISE A J, PRESTON D, LUDWIG G. Modeling for Guidance and Control Design of Autonomous Guided Parafoils[C]∥19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2007: AIAA 2007-2560. |
15 | 李兵兵. 翼伞系统建模控制及规划方法研究[D]. 北京: 中国科学院大学, 2019. |
LI Bingbing. Modeling, Control and Planning of Parafoil System[D]. Beijing: University of Chinese Academy of Sciences, 2019. | |
16 | LI Bingbing, YANG Liying, HE Yuqing, et al. Energy-Based Controller Decoupling of Powered Parafoil Unmanned Aerial Vehicle[C]∥2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Piscataway: IEEE, 2016: 313-320. |
17 | FISHER J. Semi-Rigid Deployable Wing (SDW) Advanced Precision Airborne Delivery System[C]∥14th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1997: AIAA 1997-1495. |
18 | SARIGUL-KLIJN M M, GIONFRIDDO M P, SARIGUL-KLIJN N. Technology demonstration of a 1-ton single use disposable glider[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019: AIAA 2019-2100. |
19 | SAASTAMOINEN K, TAIPALE T. Short Study of Unmanned Cargo Multicopters with Simulation[J]. Procedia Computer Science, 2020, 176: 3217-3224. |
20 | WRIGHT R, BENNEY R, MCHUGH J. Precision Airdrop System[C]∥18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005: AIAA 2005-1644. |
21 | HATTIS P, ANGERMUELLER K, FILL T, et al. In-Flight Precision Airdrop Planner Follow-on Development Program[C]∥17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003: AIAA 2003-2141. |
22 | HATTIS P, FILL T, RUBENSTEIN D, et al. Status of an on-Board PC-Based Airdrop Planner Demonstration[C]//16th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2001: AIAA 2001-2066. |
23 | HATTIS P D, FILL T J, RUBENSTEIN D S, et al. An Advanced on-Board Airdrop Planner to Facilitate Precision Payload Delivery[C]∥Modeling and Simulation Technologies Conference. Reston: AIAA, 2000: AIAA 2000-4307. |
24 | CAMBELL D, FILL T, HATTIS P, et al. An on-Board Mission Planning System to Facilitate Precision Airdrop[C]∥Infotech@Aerospace. Reston: AIAA, 2005: AIAA 2005-7071. |
25 | WEGEREEF J W, JENTINK H W. Modular Approach of Precision Airdrop System SPADES[C]∥19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2007: AIAA 2007-2547. |
26 | 姜涛, 王建中, 施家栋. 抛投式机器人高过载弹射泡沫塑料的共振吸能特性[J]. 爆炸与冲击, 2014, 34(1): 120-124. |
JIANG Tao, WANG Jianzhong, SHI Jiadong. Resonance and Energy-Absorption Capability of Polyurethane Foam in High-Shock Launching for Scout-Robot[J]. Explosion and Shock Waves, 2014, 34(1): 120-124. | |
27 | 孙杰华, 蒋明明, 赵西友. 中件空投托盘缓冲包装设计[J]. 包装工程, 2022, 43(7): 154-159. |
SUN Jiehua, JIANG Mingming, ZHAO Xiyou. Design of Middle Airdrop Pallets Buffer Packaging[J]. Packaging Engineering, 2022, 43(7): 154-159. | |
28 | 李龙, 葛泽宇, 田应仲, 等. 一种仿蝗虫腿空间缓冲吸附机构缓冲参数研究[J]. 宇航学报, 2021, 42(9): 1090-1098. |
LI Long, GE Zeyu, TIAN Yingzhong, et al. Research on Buffer Parameters of a Non-Cooperative Space Buffer Adsorption Mechanism Imitating Locust Legs[J]. Journal of Astronautics, 2021, 42(9): 1090-1098. | |
29 | 王永滨, 武士轻, 牟金岗, 等. 月球着陆器着陆缓冲展开锁定机构设计与分析[J]. 航天返回与遥感, 2021, 42(1): 57-64. |
WANG Yongbin, WU Shiqing, MU Jingang, et al. Design and Analysis of Landing Buffer Deployment and Locking Mechanism for Lunar Lander[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(1): 57-64. | |
30 | 陈金宝, 聂宏, 赵金才, 等. 月球探测器软着陆缓冲机构着陆性能分析[J]. 宇航学报, 2008, 29(6): 1729-1732. |
CHEN Jinbao, NIE Hong, ZHAO Jincai, et al. Research of the Factors of Buffering Performance in Lunar Lander[J]. Journal of Astronautics, 2008, 29(6): 1729-1732. | |
31 | 姜涛, 王建中, 施家栋. 微机电陀螺信号盲均衡迭代反卷积算法[J]. 中国惯性技术学报, 2014, 12(2): 237-241. |
JIANG Tao, WANG Jianzhong, SHI Jiadong. Iterative Deconvolution Algorithm of Blind Equalization for mems Gyroscope Signal[J]. Journal of Chinese Inertial Technology, 2014, 12(2): 237-241. | |
32 | 姜涛. 小型移动机器人自主返航关键技术研究[D]. 北京: 北京理工大学, 2014. |
JIANG Tao. Study on Key Technologies of Auto-Homing for Mini-Mobile Robot[D]. Beijing: Beijing Institute of Technology, 2014. |
[1] | 詹先军, 王新龙, 孙秀聪. 一种近地空间航天器相对论自主天文导航新方法[J]. 现代防御技术, 2024, 52(6): 1-8. |
[2] | 冯芊力, 史宪铭, 邱雄飞, 吕帅, 张宇. 基于系统动力学模型的战时弹药储备量优化分析[J]. 现代防御技术, 2024, 52(5): 173-181. |
[3] | 李煜豪, 陈雨, 刘宇航. 一种针对组合导航滤波发散问题的改进算法[J]. 现代防御技术, 2024, 52(4): 58-64. |
[4] | 云超, 谭志强, 崔建勇, 蒋攀攀, 郑腾. 导航战能力体系建设与发展建议[J]. 现代防御技术, 2024, 52(3): 26-35. |
[5] | 辛洁, 刘利, 郭靖蕾, 黄双临. 美军导航战的发展研究与启示[J]. 现代防御技术, 2023, 51(6): 69-76. |
[6] | 戚艳君, 王玉峰, 李睿. 基于健康管理的武器装备综合保障设计方法[J]. 现代防御技术, 2023, 51(5): 104-109. |
[7] | 彭惠, 余胜义, 王盛, 李先慕, 慕德. 车载惯导大倾角导航姿态误差的理论分析[J]. 现代防御技术, 2023, 51(5): 59-66. |
[8] | 曾观林, 冯国虎. 水下SINS/DVL组合导航误差抑制综述[J]. 现代防御技术, 2023, 51(4): 25-35. |
[9] | 姜宇琛, 傅军, 李豹, 宁治文, 律腾. 空间功率合成技术在干扰领域的关键问题分析[J]. 现代防御技术, 2023, 51(2): 91-99. |
[10] | 刘玄冰, 周绍磊, 肖支才, 祁亚辉, 代飞扬. 固定翼无人机航迹跟踪抗风性研究[J]. 现代防御技术, 2022, 50(1): 41-47. |
[11] | 卞伟伟, 吕鑫, 刘蝉, 贾彦翔, 邱旭阳. 低慢小目标复合拦截任务规划仿真分析[J]. 现代防御技术, 2021, 49(5): 104-110. |
[12] | 潘楠, 刘海石, 陈启用, 颜礼贤, 郭晓珏. 多基地多目标无人机协同任务规划算法研究[J]. 现代防御技术, 2021, 49(2): 49-56. |
[13] | 蔡应洲, 贺绍飞, 谷振丰, 闫郭伟. 固体火箭空间快速响应任务规划研究[J]. 现代防御技术, 2021, 49(1): 107-115. |
[14] | 陈鸿跃, 陈雨, 赵晓伟, 曹全, 孙寿才. 一种单轴旋转的车载IMU/DTU组合导航方法[J]. 现代防御技术, 2021, 49(1): 66-74. |
[15] | 张道昶, 樊忠泽. 固体火箭应急发射任务规划及发射流程研究[J]. 现代防御技术, 2018, 46(6): 122-128. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 317
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 156
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||