现代防御技术 ›› 2025, Vol. 53 ›› Issue (6): 187-196.DOI: 10.3969/j.issn.1009-086x.2025.06.020

• 综合保障性技术 • 上一篇    

基于改进LF-MOPSO的战场装备机动抢修任务分配

曹腾, 高鲁, 叶广大, 杨亮亮   

  1. 陆军工程大学 石家庄校区,河北 石家庄 050003
  • 收稿日期:2025-05-10 修回日期:2025-09-17 出版日期:2025-12-28 发布日期:2025-12-31
  • 通讯作者: 高鲁
  • 作者简介:曹腾(1989-),男,陕西合阳人。硕士生,研究方向为装备指挥与管理。

Allocation of Battlefield Equipment Mobile Repair Tasks Based on Improved LF-MOPSO

Teng CAO, Lu GAO, Guangda YE, Liangliang YANG   

  1. Shijiazhuang Campus,Army Engineering University of PLA,Shijiazhuang 050003,China
  • Received:2025-05-10 Revised:2025-09-17 Online:2025-12-28 Published:2025-12-31
  • Contact: Lu GAO

摘要:

针对传统战场装备机动抢修任务分配模型主观性强、动态适应性差和缺乏自学习能力等特点,分析了多地点、多任务、多分队情况下的抢修任务分配问题。以装备战斗力恢复水平和抢修费用消耗建立决策优化目标函数,并以抢修时间为硬约束条件建立战场装备机动抢修任务分配决策模型。为解决多维决策问题,提出基于改进莱维飞行(Levy-flight,LF)的多目标粒子群算法(multi-objective particle swarm optimization,MOPSO),可有效避免局部收敛并降低优化问题的维度,其在动态多目标场景下的收敛性、动态适应性、多样性与鲁棒性方面具有独特优势。通过实验证明,该模型适于解决战场装备机动抢修任务分配问题,求解算法具有一定稳定性。

关键词: 战场, 机动抢修, 任务分配, 改进莱维飞行, 多目标粒子群优化

Abstract:

Addressing the issues of strong subjectivity, poor dynamic adaptability, and lack of self-learning capabilities in traditional battlefield equipment mobile repair task allocation models. It analyzes the task allocation problem under scenarios involving multiple locations, multiple tasks, and multiple teams. A decision optimization objective function is established based on equipment combat effectiveness restoration levels and repair cost consumption. A battlefield equipment mobile repair task allocation decision model is then constructed with repair time as a hard constraint condition. To address the multi-dimensional decision-making problem, we propose a multi-objective particle swarm optimization (MOPSO) algorithm based on an improved Levy-flight (LF) model. This algorithm effectively avoids local convergence and reduces the dimensionality of the optimization problem, demonstrating unique advantages in terms of convergence, dynamic adaptability, diversity, and robustness in dynamic multi-objective scenarios. Experimental results show that this model can be used to solve the task allocation problem in emergency battlefield equipment repair operations, and that the solution algorithm is stable to a certain degree.

Key words: battlefield, mobile repair, task allocation, improved Levy flight, multi-objective particle swarm optimization(MOPSO)

中图分类号: