现代防御技术 ›› 2024, Vol. 52 ›› Issue (5): 116-126.DOI: 10.3969/j.issn.1009-086x.2024.05.013
• 综合保障性技术 • 上一篇
曾拥华1, 王海燕2, 武婷婷2, 王小龙1, 姜柏存1, 梁恒源1
收稿日期:
2023-06-15
修回日期:
2023-09-27
出版日期:
2024-10-28
发布日期:
2024-11-01
作者简介:
曾拥华(1977-),男,湖南岳阳人。副教授,博士,研究方向为装备抢修。
基金资助:
Yonghua ZENG1, Haiyan WANG2, Tingting WU2, Xiaolong WANG1, Baicun JIANG1, Hengyuan LIANG1
Received:
2023-06-15
Revised:
2023-09-27
Online:
2024-10-28
Published:
2024-11-01
摘要:
战场抢修(battlefield damage assessment and repair, BDAR)是战时部队战斗力的“倍增器”。针对战场条件下修理分队战场抢修能力发挥与任务完成效果的评估需求,提出了一种基于云模型的分队级战场抢修能力评估模型。通过分析BDAR能力影响因素,构建分队级战场抢修能力评估指标体系,通过组合赋权法确定指标权重;结合云理论对仿真条件下评估小组和抢修组的BDAR能力进行综合评估;在仿真条件下,对5个参训小组的装备抢修抢救行动进行实例评估,以验证该方法的科学性和可行性。
中图分类号:
曾拥华, 王海燕, 武婷婷, 王小龙, 姜柏存, 梁恒源. 基于云模型的分队级战场抢修能力评估[J]. 现代防御技术, 2024, 52(5): 116-126.
Yonghua ZENG, Haiyan WANG, Tingting WU, Xiaolong WANG, Baicun JIANG, Hengyuan LIANG. Evaluation of Contingent-Level Battlefield Repair Capability Based on Cloud Model[J]. Modern Defense Technology, 2024, 52(5): 116-126.
目标层 | 准则层 | 指标层 | 属性 |
---|---|---|---|
分队级战场抢修能力 | 损伤评估能力B1 | 损伤现象描述的准确性B11 | 定性 |
损伤现象描述的完整性B12 | 定性 | ||
损伤定位的准确性B13 | 定性 | ||
损伤程度判断的准确性B14 | 定性 | ||
抢修技术方案的科学合理性B15 | 定性 | ||
损伤评估的时效性B16 | 定量 | ||
抢修作业能力B2 | 装备抢修时间B21 | 定量 | |
抢修方法步骤的合理性B22 | 定性 | ||
抢修工具选择的合理性B23 | 定性 | ||
抢修任务完成质量B24 | 定性 | ||
组织实施能力B3 | 评估小组力量配备的合理性B31 | 定性 | |
装备抢修顺序安排的合理性B32 | 定性 | ||
修理小组任务分配的合理性B33 | 定性 | ||
装备抢修平均等待时间B34 | 定量 |
表1 修理分队BDAR能力评估指标体系
Table 1 BDAR capability evaluation index system of repair unit
目标层 | 准则层 | 指标层 | 属性 |
---|---|---|---|
分队级战场抢修能力 | 损伤评估能力B1 | 损伤现象描述的准确性B11 | 定性 |
损伤现象描述的完整性B12 | 定性 | ||
损伤定位的准确性B13 | 定性 | ||
损伤程度判断的准确性B14 | 定性 | ||
抢修技术方案的科学合理性B15 | 定性 | ||
损伤评估的时效性B16 | 定量 | ||
抢修作业能力B2 | 装备抢修时间B21 | 定量 | |
抢修方法步骤的合理性B22 | 定性 | ||
抢修工具选择的合理性B23 | 定性 | ||
抢修任务完成质量B24 | 定性 | ||
组织实施能力B3 | 评估小组力量配备的合理性B31 | 定性 | |
装备抢修顺序安排的合理性B32 | 定性 | ||
修理小组任务分配的合理性B33 | 定性 | ||
装备抢修平均等待时间B34 | 定量 |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
表 2 一致性指标
Table 2 coincidence indicator
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
评语 | 区间 | |||
---|---|---|---|---|
优秀 | (8,10] | 10 | 0.166 7 | 0.1 |
良好 | (6,8] | 7 | 0.333 3 | 0.1 |
中 | (4,6] | 5 | 0.333 3 | 0.1 |
较差 | (2,4] | 3 | 0.333 3 | 0.1 |
差 | [0,2] | 0 | 0.166 7 | 0.1 |
表 3 标准云模型的数值特征
Table 3 Numerical characteristics of standard cloud model
评语 | 区间 | |||
---|---|---|---|---|
优秀 | (8,10] | 10 | 0.166 7 | 0.1 |
良好 | (6,8] | 7 | 0.333 3 | 0.1 |
中 | (4,6] | 5 | 0.333 3 | 0.1 |
较差 | (2,4] | 3 | 0.333 3 | 0.1 |
差 | [0,2] | 0 | 0.166 7 | 0.1 |
损伤评估能力 | 抢修作业能力 | 组织指挥能力 | |
---|---|---|---|
损伤评估能力 | 1 | 5/3 | 4/5 |
抢修作业能力 | 3/5 | 1 | 2/5 |
组织指挥能力 | 5/4 | 5/2 | 1 |
表 4 一级指标判断矩阵
Table 4 First order index judgment matrix
损伤评估能力 | 抢修作业能力 | 组织指挥能力 | |
---|---|---|---|
损伤评估能力 | 1 | 5/3 | 4/5 |
抢修作业能力 | 3/5 | 1 | 2/5 |
组织指挥能力 | 5/4 | 5/2 | 1 |
B11 | B12 | B13 | B14 | B15 | B16 | |
---|---|---|---|---|---|---|
B11 | 1 | 12/11 | 4/5 | 12/11 | 3/5 | 5/3 |
B12 | 11/12 | 1 | 3/5 | 6/5 | 2/5 | 5/3 |
B13 | 5/4 | 5/3 | 1 | 5/2 | 11/12 | 5/2 |
B14 | 11/12 | 5/6 | 2/5 | 1 | 1/4 | 5/2 |
B15 | 5/3 | 5/2 | 12/11 | 4 | 1 | 5 |
B16 | 3/5 | 3/5 | 2/5 | 2/5 | 1/5 | 1 |
表5 损伤评估能力指标判断矩阵
Table 5 Damage evaluation ability index judgment matrix
B11 | B12 | B13 | B14 | B15 | B16 | |
---|---|---|---|---|---|---|
B11 | 1 | 12/11 | 4/5 | 12/11 | 3/5 | 5/3 |
B12 | 11/12 | 1 | 3/5 | 6/5 | 2/5 | 5/3 |
B13 | 5/4 | 5/3 | 1 | 5/2 | 11/12 | 5/2 |
B14 | 11/12 | 5/6 | 2/5 | 1 | 1/4 | 5/2 |
B15 | 5/3 | 5/2 | 12/11 | 4 | 1 | 5 |
B16 | 3/5 | 3/5 | 2/5 | 2/5 | 1/5 | 1 |
B21 | B22 | B23 | B24 | |
---|---|---|---|---|
B21 | 1 | 2 | 2 | 5/6 |
B22 | 1/2 | 1 | 12/11 | 1/2 |
B23 | 1/2 | 11/12 | 1 | 1/2 |
B24 | 6/5 | 2 | 2 | 1 |
表6 抢修作业能力指标判断矩阵
Table 6 Judgment matrix of ability index of rush repair operation
B21 | B22 | B23 | B24 | |
---|---|---|---|---|
B21 | 1 | 2 | 2 | 5/6 |
B22 | 1/2 | 1 | 12/11 | 1/2 |
B23 | 1/2 | 11/12 | 1 | 1/2 |
B24 | 6/5 | 2 | 2 | 1 |
B31 | B32 | B33 | B34 | |
---|---|---|---|---|
B31 | 1 | 3/5 | 1 | 2/5 |
B32 | 5/3 | 1 | 5/3 | 5/6 |
B33 | 1 | 3/5 | 1 | 3/4 |
B34 | 5/2 | 6/5 | 4/3 | 1 |
表7 组织实施能力指标判断矩阵
Table 7 Organization implementation ability index judgment matrix
B31 | B32 | B33 | B34 | |
---|---|---|---|---|
B31 | 1 | 3/5 | 1 | 2/5 |
B32 | 5/3 | 1 | 5/3 | 5/6 |
B33 | 1 | 3/5 | 1 | 3/4 |
B34 | 5/2 | 6/5 | 4/3 | 1 |
指标 | |||
---|---|---|---|
损伤评估能力A1 | 0.345 6 | 0.472 6 | 0.380 2 |
抢修作业能力A2 | 0.195 2 | 0.269 2 | 0.175 5 |
组织指挥能力A3 | 0.459 2 | 0.258 2 | 0.444 3 |
损伤现象描述的准确性B11 | 0.050 7 | 0.111 2 | 0.080 2 |
损伤现象描述的完整性B12 | 0.043 9 | 0.062 5 | 0.039 0 |
损伤定位的准确性B13 | 0.077 6 | 0.057 9 | 0.063 9 |
损伤程度判断的准确性B14 | 0.039 6 | 0.076 5 | 0.043 1 |
抢修技术方案的科学合理性B15 | 0.109 3 | 0.080 2 | 0.124 7 |
损伤评估的时效性B16 | 0.024 5 | 0.084 3 | 0.029 4 |
装备抢修时间B21 | 0.062 1 | 0.060 9 | 0.053 8 |
抢修方法步骤的合理性B22 | 0.033 2 | 0.111 4 | 0.052 6 |
抢修工具选择的合理性B23 | 0.031 8 | 0.047 9 | 0.021 7 |
抢修任务完成质量B24 | 0.068 1 | 0.049 0 | 0.047 4 |
损伤小组力量配备的合理性B31 | 0.077 1 | 0.055 3 | 0.060 6 |
装备抢修顺序安排的合理性B32 | 0.135 0 | 0.072 7 | 0.139 5 |
修理小组任务分配的合理性B33 | 0.090 6 | 0.048 7 | 0.062 8 |
抢修平均等待时间B34 | 0.156 5 | 0.081 5 | 0.181 4 |
表8 指标权重表
Table 8 Index weight table
指标 | |||
---|---|---|---|
损伤评估能力A1 | 0.345 6 | 0.472 6 | 0.380 2 |
抢修作业能力A2 | 0.195 2 | 0.269 2 | 0.175 5 |
组织指挥能力A3 | 0.459 2 | 0.258 2 | 0.444 3 |
损伤现象描述的准确性B11 | 0.050 7 | 0.111 2 | 0.080 2 |
损伤现象描述的完整性B12 | 0.043 9 | 0.062 5 | 0.039 0 |
损伤定位的准确性B13 | 0.077 6 | 0.057 9 | 0.063 9 |
损伤程度判断的准确性B14 | 0.039 6 | 0.076 5 | 0.043 1 |
抢修技术方案的科学合理性B15 | 0.109 3 | 0.080 2 | 0.124 7 |
损伤评估的时效性B16 | 0.024 5 | 0.084 3 | 0.029 4 |
装备抢修时间B21 | 0.062 1 | 0.060 9 | 0.053 8 |
抢修方法步骤的合理性B22 | 0.033 2 | 0.111 4 | 0.052 6 |
抢修工具选择的合理性B23 | 0.031 8 | 0.047 9 | 0.021 7 |
抢修任务完成质量B24 | 0.068 1 | 0.049 0 | 0.047 4 |
损伤小组力量配备的合理性B31 | 0.077 1 | 0.055 3 | 0.060 6 |
装备抢修顺序安排的合理性B32 | 0.135 0 | 0.072 7 | 0.139 5 |
修理小组任务分配的合理性B33 | 0.090 6 | 0.048 7 | 0.062 8 |
抢修平均等待时间B34 | 0.156 5 | 0.081 5 | 0.181 4 |
指标 | 标准时间/min | 优 | 良 | 中 | 较差 | 差 |
---|---|---|---|---|---|---|
损伤评估的时效性 | 20 | (-20,-10] | (-10,-5] | (-5,-2] | (-2,0] | (0,∞] |
装备抢修时间 | 60 | (-60,-20] | (-20,-10] | (-10,-5] | (-5,0] | (0,∞] |
抢修平均等待时间 | 10 | (-10,-5] | (-5,0] | (0,5] | (5,10] | (10,∞] |
表9 定量指标评分等级划分标准
Table 9 Standard for grading quantitative indicators
指标 | 标准时间/min | 优 | 良 | 中 | 较差 | 差 |
---|---|---|---|---|---|---|
损伤评估的时效性 | 20 | (-20,-10] | (-10,-5] | (-5,-2] | (-2,0] | (0,∞] |
装备抢修时间 | 60 | (-60,-20] | (-20,-10] | (-10,-5] | (-5,0] | (0,∞] |
抢修平均等待时间 | 10 | (-10,-5] | (-5,0] | (0,5] | (5,10] | (10,∞] |
组别 | 专家 | B11 | B12 | B13 | B14 | B15 | B16 | B21 | B22 | B23 | B24 | B31 | B32 | B33 | B34 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 8 | 8 | 9 | 9 | 8 | 10 | 10 | 9 | 9 | 8 | 9 | 9 | 8 | 10 |
2 | 9 | 8 | 9 | 9 | 9 | 10 | 10 | 9 | 9 | 8 | 9 | 9 | 9 | 10 | |
3 | 9 | 9 | 9 | 8 | 8 | 10 | 10 | 9 | 9 | 9 | 9 | 9 | 9 | 10 | |
4 | 9 | 9 | 9 | 9 | 9 | 10 | 10 | 9 | 9 | 9 | 9 | 9 | 9 | 10 | |
5 | 8 | 9 | 9 | 9 | 9 | 10 | 10 | 9 | 9 | 8 | 9 | 9 | 8 | 10 | |
B | 1 | 8 | 7 | 8 | 9 | 8 | 3 | 10 | 8 | 9 | 8 | 8 | 8 | 8 | 5 |
2 | 8 | 7 | 8 | 9 | 8 | 3 | 10 | 8 | 9 | 8 | 8 | 8 | 9 | 5 | |
3 | 7 | 7 | 8 | 9 | 7 | 3 | 10 | 7 | 9 | 8 | 7 | 8 | 8 | 5 | |
4 | 8 | 8 | 9 | 9 | 8 | 3 | 10 | 8 | 9 | 9 | 8 | 9 | 9 | 5 | |
5 | 8 | 8 | 8 | 9 | 7 | 3 | 10 | 8 | 9 | 8 | 8 | 8 | 9 | 5 | |
C | 1 | 6 | 6 | 7 | 8 | 6 | 5 | 10 | 8 | 9 | 7 | 6 | 8 | 9 | 7 |
2 | 7 | 6 | 7 | 8 | 6 | 5 | 10 | 9 | 9 | 8 | 6 | 8 | 9 | 7 | |
3 | 6 | 6 | 7 | 8 | 6 | 5 | 10 | 9 | 8 | 7 | 5 | 8 | 8 | 7 | |
4 | 6 | 7 | 8 | 8 | 7 | 5 | 10 | 9 | 9 | 8 | 6 | 9 | 8 | 7 | |
5 | 6 | 7 | 8 | 8 | 6 | 5 | 10 | 9 | 9 | 8 | 6 | 8 | 8 | 7 | |
D | 1 | 9 | 9 | 8 | 9 | 8 | 10 | 3 | 8 | 9 | 6 | 9 | 6 | 9 | 7 |
2 | 8 | 8 | 8 | 9 | 8 | 10 | 3 | 8 | 9 | 5 | 9 | 7 | 8 | 7 | |
3 | 9 | 8 | 9 | 9 | 9 | 10 | 3 | 7 | 8 | 6 | 8 | 6 | 8 | 7 | |
4 | 9 | 9 | 8 | 9 | 9 | 10 | 3 | 8 | 9 | 6 | 9 | 7 | 9 | 7 | |
5 | 8 | 9 | 8 | 9 | 8 | 10 | 3 | 8 | 9 | 5 | 9 | 6 | 9 | 7 | |
E | 1 | 6 | 7 | 7 | 8 | 6 | 10 | 7 | 8 | 7 | 7 | 8 | 6 | 8 | 5 |
2 | 6 | 8 | 7 | 8 | 6 | 10 | 7 | 8 | 7 | 8 | 7 | 5 | 8 | 5 | |
3 | 7 | 8 | 6 | 7 | 5 | 10 | 7 | 8 | 8 | 8 | 7 | 6 | 8 | 5 | |
4 | 6 | 7 | 6 | 8 | 6 | 10 | 7 | 7 | 8 | 8 | 7 | 6 | 7 | 5 | |
5 | 6 | 7 | 6 | 8 | 6 | 10 | 7 | 7 | 8 | 8 | 8 | 6 | 8 | 5 |
表10 5位专家对5个参训小组的评价结果
Table 10 Evaluation results of five experts on five groups participating in the training
组别 | 专家 | B11 | B12 | B13 | B14 | B15 | B16 | B21 | B22 | B23 | B24 | B31 | B32 | B33 | B34 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 8 | 8 | 9 | 9 | 8 | 10 | 10 | 9 | 9 | 8 | 9 | 9 | 8 | 10 |
2 | 9 | 8 | 9 | 9 | 9 | 10 | 10 | 9 | 9 | 8 | 9 | 9 | 9 | 10 | |
3 | 9 | 9 | 9 | 8 | 8 | 10 | 10 | 9 | 9 | 9 | 9 | 9 | 9 | 10 | |
4 | 9 | 9 | 9 | 9 | 9 | 10 | 10 | 9 | 9 | 9 | 9 | 9 | 9 | 10 | |
5 | 8 | 9 | 9 | 9 | 9 | 10 | 10 | 9 | 9 | 8 | 9 | 9 | 8 | 10 | |
B | 1 | 8 | 7 | 8 | 9 | 8 | 3 | 10 | 8 | 9 | 8 | 8 | 8 | 8 | 5 |
2 | 8 | 7 | 8 | 9 | 8 | 3 | 10 | 8 | 9 | 8 | 8 | 8 | 9 | 5 | |
3 | 7 | 7 | 8 | 9 | 7 | 3 | 10 | 7 | 9 | 8 | 7 | 8 | 8 | 5 | |
4 | 8 | 8 | 9 | 9 | 8 | 3 | 10 | 8 | 9 | 9 | 8 | 9 | 9 | 5 | |
5 | 8 | 8 | 8 | 9 | 7 | 3 | 10 | 8 | 9 | 8 | 8 | 8 | 9 | 5 | |
C | 1 | 6 | 6 | 7 | 8 | 6 | 5 | 10 | 8 | 9 | 7 | 6 | 8 | 9 | 7 |
2 | 7 | 6 | 7 | 8 | 6 | 5 | 10 | 9 | 9 | 8 | 6 | 8 | 9 | 7 | |
3 | 6 | 6 | 7 | 8 | 6 | 5 | 10 | 9 | 8 | 7 | 5 | 8 | 8 | 7 | |
4 | 6 | 7 | 8 | 8 | 7 | 5 | 10 | 9 | 9 | 8 | 6 | 9 | 8 | 7 | |
5 | 6 | 7 | 8 | 8 | 6 | 5 | 10 | 9 | 9 | 8 | 6 | 8 | 8 | 7 | |
D | 1 | 9 | 9 | 8 | 9 | 8 | 10 | 3 | 8 | 9 | 6 | 9 | 6 | 9 | 7 |
2 | 8 | 8 | 8 | 9 | 8 | 10 | 3 | 8 | 9 | 5 | 9 | 7 | 8 | 7 | |
3 | 9 | 8 | 9 | 9 | 9 | 10 | 3 | 7 | 8 | 6 | 8 | 6 | 8 | 7 | |
4 | 9 | 9 | 8 | 9 | 9 | 10 | 3 | 8 | 9 | 6 | 9 | 7 | 9 | 7 | |
5 | 8 | 9 | 8 | 9 | 8 | 10 | 3 | 8 | 9 | 5 | 9 | 6 | 9 | 7 | |
E | 1 | 6 | 7 | 7 | 8 | 6 | 10 | 7 | 8 | 7 | 7 | 8 | 6 | 8 | 5 |
2 | 6 | 8 | 7 | 8 | 6 | 10 | 7 | 8 | 7 | 8 | 7 | 5 | 8 | 5 | |
3 | 7 | 8 | 6 | 7 | 5 | 10 | 7 | 8 | 8 | 8 | 7 | 6 | 8 | 5 | |
4 | 6 | 7 | 6 | 8 | 6 | 10 | 7 | 7 | 8 | 8 | 7 | 6 | 7 | 5 | |
5 | 6 | 7 | 6 | 8 | 6 | 10 | 7 | 7 | 8 | 8 | 8 | 6 | 8 | 5 |
组别 | 损伤评估能力 | 抢修作业能力 | 组织指挥能力 | 总得分 |
---|---|---|---|---|
A组 | (8.798 0,0.495 9,0.208 0) | (9.144 5,0.219 1,0.101 3) | (9.351 7,0.131 0,0.071 2) | (9.104 8,0.279 8,0.126 7) |
B组 | (7.525 5,0.487 5,0.211 6) | (8.730 8,0.297 5,0.152 9) | (6.895 5,0.377 1,0.147 5) | (7.457 1,0.413 3,0.172 8) |
C组 | (6.533 7,0.411 6,0.192 4) | (8.843 8,0.373 9,0.177 7) | (7.410 9,0.377 1,0.147 5) | (7.328 8,0.390 2,0.167 4) |
D组 | (8.620 7,0.525 4,0.222 5) | (5.858 0,0.431 4,0.177 7) | (7.283 3,0.442 1,0.164 1) | (7.541 7,0.473 4,0.187 8) |
E组 | (6.700 4,0.431 5,0.204 5) | (5.974 3,0.376 2,0.147 3) | (7.470 1,0.455 1,0.183 7) | (6.512 9,0.404 1,0.172 5) |
表11 5个参训小组的评估云数值特征
Table 11 Evaluation of cloud numerical characteristics by five participating teams
组别 | 损伤评估能力 | 抢修作业能力 | 组织指挥能力 | 总得分 |
---|---|---|---|---|
A组 | (8.798 0,0.495 9,0.208 0) | (9.144 5,0.219 1,0.101 3) | (9.351 7,0.131 0,0.071 2) | (9.104 8,0.279 8,0.126 7) |
B组 | (7.525 5,0.487 5,0.211 6) | (8.730 8,0.297 5,0.152 9) | (6.895 5,0.377 1,0.147 5) | (7.457 1,0.413 3,0.172 8) |
C组 | (6.533 7,0.411 6,0.192 4) | (8.843 8,0.373 9,0.177 7) | (7.410 9,0.377 1,0.147 5) | (7.328 8,0.390 2,0.167 4) |
D组 | (8.620 7,0.525 4,0.222 5) | (5.858 0,0.431 4,0.177 7) | (7.283 3,0.442 1,0.164 1) | (7.541 7,0.473 4,0.187 8) |
E组 | (6.700 4,0.431 5,0.204 5) | (5.974 3,0.376 2,0.147 3) | (7.470 1,0.455 1,0.183 7) | (6.512 9,0.404 1,0.172 5) |
评估方法 | 综合得分排序 | 最佳抢修小组 |
---|---|---|
云模型 | A≻D≻B≻C≻E | A |
TOPSIS | A≻D≻B≻C≻E | A |
AHP | A≻D≻B≻C≻E | A |
灰色关联分析 | A≻D≻B≻C≻E | A |
表12 对比方法结果
Table 12 Comparison method result
评估方法 | 综合得分排序 | 最佳抢修小组 |
---|---|---|
云模型 | A≻D≻B≻C≻E | A |
TOPSIS | A≻D≻B≻C≻E | A |
AHP | A≻D≻B≻C≻E | A |
灰色关联分析 | A≻D≻B≻C≻E | A |
1 | XU Longyang, WEI Zhaolei, CHEN Chunliang, et al. Application of the Set Pair Analysis Based on Entropy and Weight to Efficiency Evaluation of the BDAR for Amphibious Equipment[C]∥2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE). Piscataway: IEEE, 2013: 1383-1386. |
2 | 罗九林, 魏兆磊, 潘洪平. 熵权-集对分析方法在抢修效能评估中的应用[J]. 兵工自动化, 2013, 32(5): 10-12, 24. |
LUO Jiulin, WEI Zhaolei, PAN Hongping. Application of Entropy Weight-Set Pair Analysis Method in Efficiency Evaluation of Emergency Repair[J]. Ordnance Industry Automation, 2013, 32(5): 10-12, 24. | |
3 | 张辽宁, 张政, 赵师, 等. 基于SD方法的陆军主战装备战场抢修能力评估模型[J]. 兵工自动化, 2015, 34(6): 48-51. |
ZHANG Liaoning, ZHANG Zheng, ZHAO Shi, et al. Evaluation Model of Battlefield Rush Repair Ability of Army Main Battle Equipment Based on SD[J]. Ordnance Industry Automation, 2015, 34(6): 48-51. | |
4 | 刘保军, 李成, 卿华, 等. 基于不确定性量化的装备抢修效能云模型评估[J]. 现代防御技术, 2021, 49(5): 65-70, 103. |
LIU Baojun, LI Cheng, QING Hua, et al. Evaluation of Equipment Repair Effectiveness Based on Uncertainty Quantification Method and Cloud Model[J]. Modern Defence Technology, 2021, 49(5): 65-70, 103. | |
5 | 赵黎兴, 侯兴明, 徐兆文, 等. 基于GA-小波-BP神经网络的装备维修能力评估[J]. 现代防御技术, 2022, 50(2): 84-95. |
ZHAO Lixing, HOU Xingming, XU Zhaowen, et al. Evaluation of Test Equipment Maintenance Ability Based on GA-Wavelet-BP Neural Network[J]. Modern Defence Technology, 2022, 50(2): 84-95. | |
6 | 杨军锋, 李锋, 潘洪平, 等. 基于CAS理论的修理分队抢修能力仿真评估[J]. 火力与指挥控制, 2013, 38(12): 116-119, 123. |
YANG Junfeng, LI Feng, PAN Hongping, et al. Simulation Evaluation of Repair Unit BDAR Capacity Based on CAS Theory[J]. Fire Control & Command Control, 2013, 38(12): 116-119, 123. | |
7 | 胡涛, 黎放, 胡志刚, 等. 基于贝叶斯网络的舰船战损评估研究[J]. 武汉理工大学学报(交通科学与工程版), 2007, 31(6): 1067-1070. |
HU Tao, LI Fang, HU Zhigang, et al. Research of Warship Battle Damage Assessment Based on Bayesian Network[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2007, 31(6): 1067-1070. | |
8 | 谢泽, 刘佳, 黎放. 基于Bayesian的舰船战场损伤评估模型研究[J]. 舰船科学技术, 2009, 31(4): 113-116. |
XIE Ze, LIU Jia, LI Fang. Bayesian Net Inference Research of Warship Battle Damage Assessment[J]. Ship Science and Technology, 2009, 31(4): 113-116. | |
9 | 赵兵, 王海宽, 石全, 等. 基于指标分类权重与未确知测度的装备战场损伤等级评估模型[J]. 数学的实践与认识, 2014, 44(8): 144-151. |
ZHAO Bing, WANG Haikuan, SHI Quan, et al. The Grade Model of Battlefield Damage Assessment for Equipment based on Weight of Classification of Index & Unascertained Measure[J]. Mathematics in Practice and Theory, 2014, 44(8): 144-151. | |
10 | 董原生, 潘洪平, 李爱民, 等. 基于HWME的战损评估决策支持体系及其模型库研究[J]. 车辆与动力技术, 2011(3): 61-64. |
DONG Yuansheng, PAN Hongping, LI Aimin, et al. Research on Battlefield Damage Assessment Decision Support System and Its Model-Base Based on HWME[J]. Vehicle & Power Technology, 2011(3): 61-64. | |
11 | 吕茂庭, 车建国, 丁琳宁. 基于损伤树的装备战场损伤评估研究[J]. 电子产品可靠性与环境试验, 2011, 29(5): 26-29. |
Maoting LÜ, CHE Jianguo, DING Linning. Study of Battlefield Damage Assessment of Equipment Based on Damage Tree[J]. Electronic Product Reliability and Environmental Testing, 2011, 29(5): 26-29. | |
12 | ZHANG Kaikai, ZHANG Shuai, WANG Zhenglan, et al. Research on Equipment Damage Grade Evaluation Model Based on ISODATA Fuzzy Clustering[C]∥2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). Piscataway: IEEE, 2020: 1379-1382. |
13 | 舒华, 程旭东, 赵劲松, 等. 装备战场抢修能力动态评价研究[J]. 军事交通学院学报, 2011, 13(11): 24-27. |
SHU Hua, CHENG Xudong, ZHAO Jinsong, et al. Research on Dynamic Evaluation of Battlefield Emergency Repair Ability of Equipment[J]. Journal of Military Transportation University, 2011, 13(11): 24-27. | |
14 | 舒华, 程旭东, 赵劲松, 等. 模糊综合评价模型在装备战场抢修能力评价中的运用研究[J]. 硅谷, 2011(19): 98-99. |
SHU Hua, CHENG Xudong, ZHAO Jinsong, et al. Research on Application of Fuzzy Comprehensive Evaluation Model in Equipment Battlefield Repair Capability Evaluation[J]. Silicon Valley, 2011(19): 98-99. | |
15 | 陈精卫, 汪伦根, 曹银, 等. 武器装备战场损伤评估[J]. 四川兵工学报, 2010, 31(4): 16-18. |
CHEN Jingwei, WANG Lungen, CAO Yin, et al. Battlefield Damage Assessment of Weapon Equipment[J]. Journal of Sichuan Ordnance, 2010, 31(4): 16-18. | |
16 | SMAL T. Preliminary Concept of Expedient/Battle Damage Repair System for the Polish Armed Forces[J]. Scientific Journal of the Military University of Land Forces, 2011, 162(4): 230-237. |
17 | 董泽委, 胡起伟, 孙宝琛, 等. 战场损伤装备抢修排序模型研究[J]. 计算机仿真, 2011, 28(4): 18-21. |
DONG Zewei, HU Qiwei, SUN Baochen, et al. Model of Battlefield Damaged Equipment Repair Ordering[J]. Computer Simulation, 2011, 28(4): 18-21. | |
18 | 张慧, 熊欢欢, 刘越群. 基于TOPSIS熵权法的我国区块链产业生态系统绩效评价研究[J]. 科技管理研究, 2023, 43(5): 38-45. |
ZHANG Hui, XIONG Huanhuan, LIU Yuequn. Research on Performance Evaluation of China's Blockchain Industry Ecosystem Based on Entropy Weight Method and TOPSIS[J]. Science and Technology Management Research, 2023, 43(5): 38-45. | |
19 | 黄德镛, 刘孙政, 高聪, 等. 基于组合赋权-云模型的尾矿库风险评价方法研究[J]. 有色金属工程, 2023, 13(1): 127-135. |
HUANG Deyong, LIU Sunzheng, GAO Cong, et al. Study on Tailings Risk Assessment Method Based on Combination Weighting-Cloud Model[J]. Nonferrous Metals Engineering, 2023, 13(1): 127-135. | |
20 | 赵沐嘉. 基于灰色关联分析对装配式施工安全风险予以评估[J]. 黑龙江科学, 2023, 14(2): 51-53, 56. |
ZHAO Mujia. Evaluation of Security Risk of Prefabricated Construction Based on Grey Correlation Analysis[J]. Heilongjiang Science, 2023, 14(2): 51-53, 56. |
[1] | 孟宪良, 张搏, 张明亮, 王金, 孟乐, 薛明. 基于SEM的末端防御装备体系结构贡献率评估[J]. 现代防御技术, 2024, 52(5): 1-8. |
[2] | 邱雄飞, 张桦, 赵润泽, 黄增端. 基于广义随机Petri网的装备战场抢修建模与分析[J]. 现代防御技术, 2024, 52(4): 130-136. |
[3] | 郭强, 王敬华, 魏伟, 王涛. 基于排队论的电火一体多层防空拦截能力研究[J]. 现代防御技术, 2024, 52(3): 20-25. |
[4] | 鲍俊臣, 韩道文, 程立, 王双宇, 宋振之. 基于层次分析法的穿透性制空作战飞机威胁评估[J]. 现代防御技术, 2024, 52(1): 8-15. |
[5] | 王坤, 张玉臣, 董书琴, 吴疆. 基于TOPSIS-灰色关联分析法的网络空间防御能力评估[J]. 现代防御技术, 2023, 51(6): 97-104. |
[6] | 李喆, 童逸琦, 夏文博, 应宇欣. 一种多源集中式空中目标类型综合识别方法[J]. 现代防御技术, 2023, 51(4): 53-62. |
[7] | 于勇政, 邵学辉, 高仕博, 蒲治伟, 薛冰. 多平台协同跟踪最优构型设计[J]. 现代防御技术, 2023, 51(3): 107-119. |
[8] | 杨鑫, 许卫东, 刘朝畅, 贾其, 郝有斌. 基于AHP和集对分析的自适应伪装系统综合评级[J]. 现代防御技术, 2023, 51(2): 109-118. |
[9] | 张耀龙, 阮拥军, 赵陆昊, 黄义松, 郭宇荣. 基于可拓云的合成旅装备保障能力评估方法研究[J]. 现代防御技术, 2023, 51(1): 86-95. |
[10] | 李迎博, 谭黎立, 王凯旋, 梁卓, 潘彦鹏. 一种基于构件重要度的软件可靠性评估方法[J]. 现代防御技术, 2022, 50(6): 103-109. |
[11] | 翟芸, 胡冰, 施端阳. 基于改进AHP-熵权法的雷达装备可靠性评估指标赋权方法[J]. 现代防御技术, 2022, 50(4): 148-155. |
[12] | 刘勇, 周宏潮, 杨照, 徐琎. 基于攻防对抗序列的“饱和”能力评估方法[J]. 现代防御技术, 2022, 50(3): 97-102. |
[13] | 李威, 卢盈齐. 基于聚类组合赋权的空袭目标威胁评估方法[J]. 现代防御技术, 2022, 50(3): 17-24. |
[14] | 赵黎兴, 侯兴明, 徐兆文, 和林子. 基于GA-小波-BP神经网络的装备维修能力评估[J]. 现代防御技术, 2022, 50(2): 84-95. |
[15] | 吕宝, 刘钊, 魏小根. 基于人为因素的航空装备系统效能评估技术[J]. 现代防御技术, 2021, 49(6): 98-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||