1 |
李伟. 复杂系统的智能故障诊断技术现状及其发展趋势[J]. 计算机仿真, 2004, 21(10): 4-7, 11.
|
|
LI Wei. Advance of Intelligent Fault Diagnosis for Complex System and Its Present Situation[J]. Computer Simulation, 2004, 21(10): 4-7, 11.
|
2 |
陈如明. 大数据时代的挑战价值与应对策略[J]. 移动通信, 2012, 36(17): 14-15.
|
|
CHEN Ruming. Challenges, Values and Countermeasures in the Era of Big Data[J]. Mobile Communications, 2012, 36(17): 14-15.
|
3 |
夏松波, 张嘉钟, 徐世昌, 等. 旋转机械故障诊断技术的现状与展望[J]. 振动与冲击, 1997, 16(2): 1-5.
|
|
XIA Songbo, ZHANG Jiazhong, XU Shichang, et al. State of the Art and Developing Trends of Fault Diagnosis of Rotating Machinery[J]. Journal of Vibration and Shock, 1997, 16(2): 1-5.
|
4 |
雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104.
|
|
LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and Challenges of Machinery Intelligent Fault Diagnosis in Big Data Era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104.
|
5 |
王国彪, 何正嘉, 陈雪峰, 等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报, 2013, 49(1): 63-72.
|
|
WANG Guobiao, HE Zhengjia, CHEN Xuefeng, et al. Basic Research on Machinery Fault Diagnosis—What is the Prescription[J]. Journal of Mechanical Engineering, 2013, 49(1): 63-72.
|
6 |
LECUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521(7553): 436-444.
|
7 |
HINTON G E, OSINDERO S, TEH Y W. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
|
8 |
VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion[J]. The Journal of Machine Learning Research, 2010, 11: 3371-3408.
|
9 |
MOUSTAPHA A I, SELMIC R R. Wireless Sensor Network Modeling Using Modified Recurrent Neural Networks: Application to Fault Detection[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(5): 981-988.
|
10 |
TANG Shenghao, SHEN Changqing, WANG Dong, et al. Adaptive Deep Feature Learning Network with Nesterov Momentum and Its Application to Rotating Machinery Fault Diagnosis[J]. Neurocomputing, 2018, 305: 1-14.
|
11 |
LU Chen, WANG Zhenya, QIN Weili, et al. Fault Diagnosis of Rotary Machinery Components Using a Stacked Denoising Autoencoder-Based Health State Identification[J]. Signal Processing, 2017, 130: 377-388.
|
12 |
刘春生, 胡寿松. 一类基于状态估计的非线性系统的智能故障诊断[J]. 控制与决策, 2005, 20(5): 557-561.
|
|
LIU Chunsheng, HU Shousong. Intelligent Nonlinear Fault Diagnosis Based on State Estimator[J]. Control and Decision, 2005, 20(5): 557-561.
|
13 |
王云江. 故障诊断技术在机电设备运行管理中的实践应用[J]. 黑龙江科技信息, 2014(5): 43.
|
|
WANG Yunjiang. Practical Application of Fault Diagnosis Technology in Operation Management of Electromechanical Equipment[J]. Heilongjiang Science and Technology Information, 2014(5): 43.
|
14 |
HAO Quantian, LI Song, GAO Yurong.Application of On-Line Monitoring and Fault Diagnosis in Large Complex Equipment Management[J]. Automation Application, 2011(10): 44-45,51.
|
15 |
赵欣欣, 王秋勤. 神经网络理论在故障诊断中的应用[J]. 林业机械与木工设备, 2011, 39(10): 48-49.
|
|
ZHAO Xinxin, WANG Qiuqin. Application of Neutral Network Theory in Fault Analysis[J]. Forestry Machinery & Woodworking Equipment, 2011, 39(10): 48-49.
|