Modern Defense Technology ›› 2025, Vol. 53 ›› Issue (2): 1-18.DOI: 10.3969/j.issn.1009-086x.2025.02.001
• Expert Manuscript • Next Articles
Received:
2025-02-19
Revised:
2025-03-20
Online:
2025-04-28
Published:
2025-04-30
作者简介:
李喜茹(1988-),男,吉林长春人。高工,博士生,研究方向为飞行器总体设计。
基金资助:
CLC Number:
Xiru LI, Peng BAI. Review of Overall Benefit Assessment and Optimization Methods for Morphing Aircraft[J]. Modern Defense Technology, 2025, 53(2): 1-18.
李喜茹, 白鹏. 可变形飞行器总体收益评估及优化方法综述[J]. 现代防御技术, 2025, 53(2): 1-18.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xdfyjs.cn/EN/10.3969/j.issn.1009-086x.2025.02.001
序 号 | 飞行器类型 | 飞行器名称 | 变形方式 | 评估方法 | 优化方法 | 收益结果 | 文献 |
---|---|---|---|---|---|---|---|
1 | 无人机 | 1/3比例“雅克”-54无线电控无人机 | 伸缩翼 | 数值仿真 飞行试验 | 无 | 脱靶量和燃油消耗指标小幅度提升的同时,任务失败概率也增加 | [ |
2 | 10 kg无人机 | 变展长变弯度 | 数值仿真 | 无 | 显著增加了速域范围、提高了下滑性能、降低燃油消耗,加速和爬升等性能轻微降低 | [ | |
3 | 5 m跨径联翼无人机 | 主翼外部前掠和后掠、主翼上反角变化伸缩尾翼变形垂尾 | 数值仿真 | 无 | 最小水平转弯半径和拉起半径分别降低21%和14%,起飞和降落距离分别降低13%和11%,剩余动力增强8% | [ | |
4 | 25 kg无人机 | 变翼展和变弯度 | 数值仿真 | 无 | 变翼展变形,在质量增加不超过12%,变形具有优势;变弯度变形,在质量增加不超过3%,变形具有优势 | [ | |
5 | Olharapo无人机 | 伸缩翼 | 数值仿真 飞行试验 | 基于任务的多级设计优化 | 高速条件下能耗减少明显,起飞、爬升和巡航阶段的能耗增加 | [ | |
6 | “全球鹰”RQ4-A | 伸缩翼 | 数值仿真 | 无 | 随着翼展的增加,航时先增加后减少 | [ | |
7 | 15 kg Decode Mark IV无人机 | 变弯度副翼 | 数值仿真 飞行试验 | 无 | 变形机翼比传统机翼重54 g,滚转操纵能力增强,航时航程增加 | [ | |
8 | HCUAV RX-1无人机 | 变形小翼 | 数值仿真 | 无 | 集成变形小翼没有收益 | [ | |
9 | EVENT38小型电动无人机 | 伸缩翼 | 数值仿真 飞行试验 | 无 | 变形翼机构增加的质量抵消了气动效率的提高,没有收益 | [ | |
10 | 机载风能(AWE)无人机 | 变弯度 | 数值仿真 飞行试验 | 变形-任务全耦合优化方法 | 功率输出提高了7.8% | [ | |
11 | “全球鹰”RQ4-A | 单双翼变形 | 数值仿真 | 无 | 具有更好的起降性能和抗风性能,增加最大飞行高度和航程 | [ | |
12 | EURRICA无人机 | 变形小翼扭曲变形变形控制面 | 数值仿真 | 无 | 集成变形小翼和扭曲变形没有收益,集成变形控制面可以节省2.5%的燃油 | [ | |
13 | 客机 | 类似空客A321的单通道飞机 | 智能变形前缘 | 数值仿真 | 多学科综合概念飞机设计和优化(MICADO) | 2种智能变形前缘使最大起飞质量、轮挡油量、直接运行成本分别均增加 | [ |
14 | 运输机 | 224座混合翼体(HWB) | 自适应柔顺后缘 | 数值仿真 | 无 | 222座宽体运输机从自适应柔顺后缘中获益最大:空载质量减少2.6%,起飞质量减少2.4%,燃油燃烧减少3.0% | [ |
15 | 222座常规宽体运输机 | ||||||
16 | 154座常规窄体运输机 | ||||||
17 | 客机 | 支线喷气式飞机 | 手性结构变形翼尖 | 数值仿真 | 无 | 在满载1 000 km的典型任务剖面内,节省燃油消耗至少3% | [ |
18 | NASA通用研究模型 | 自适应后缘 | 数值仿真 | 高保真飞机构型多学科优化设计(MACH) | 机翼质量降低了12.4%,在7 730 n mile的全任务段自适应后缘燃油消耗降低了2.7% | [ | |
19 | 与空客A320-200飞机相当的单通道客机 | 增强型自适应下放前缘(EADN)、 自适应后缘(ATED)、 小翼主动后缘(WATE) | 数值仿真 地面试验 | 多学科综合概念飞机设计和优化(MICADO) | 3种智能变形技术和组合变形技术可以节省燃油量分别为2.5%,5.72%,3.03%,考虑典型机队,组合变形技术可节省燃油6.5% | [ | |
20 | 与空客A320-200飞机相当的单通道客机 | 小翼主动后缘 | 数值仿真 综合分析 | 无 | 小翼主动后缘可使结构质量下降约2%,升阻比提高0.3%,典型航空公司机队减少1%的燃油成本,但相比传统小翼,制造成本上涨15%,维护成本上涨5%,驱动机构维修成本上涨15% | [ | |
21 | 常规支线客机EMB9MOR | 变形翼尖 | 数值仿真 | 基于性能的多学科设计优化方法 | 变形翼尖可能不会带来任何优势,油耗减少不到1%,若考虑含驱动的完整的变形翼尖结构的质量,将导致更低的收益甚至负收益 | [ | |
22 | 通用长途商用飞机AX-1 | 折叠翼尖 | 数值仿真 | 无 | 如当展弦比增加到10.4时(基线飞机展弦比9.4),增加的质量低于基线飞机空重的6.5%,航程将提升,若超过6.5%,则航程反而会下降 | [ | |
23 | 运输机 | 远程商用运输机 | 变弯度连续后缘襟翼 | 数值仿真 | 无 | 巡航减阻2.6%,结构机翼质量减少了11.8%,从31 992 kg减少到28 217 kg,总燃料消耗从112 769 kg减少到107 457 kg,减少了4.7% | [ |
24 | 公务机 | Cessna Citation X公务机 | 变形平尾 自适应小翼 | 数值仿真 | 无 | 集成自适应小翼巡航时可以降低2.12%燃油消耗,集成变形平尾巡航时可以降低6.9%燃油消耗 | [ |
25 | 中型公务机 | 变形小翼 | 数值仿真 | 最大航程时减小6%燃油消耗 | [ | ||
26 | 客机 | CRJ700支线飞机 | 自适应小翼 | 数值仿真 | 无 | 巡航时燃油消耗减少了1.99%,爬升速度增加 | [ |
27 | 商用飞机 | 分布式变弧度后缘襟翼系统 | 数值仿真 | 多学科综合概念飞机设计和优化(MICADO) | 5种分布式变弧度后缘襟翼系统都有相当大的节省燃油的潜力,从7.4%~9.1% | [ | |
28 | 远程客机 | 变弯度 | 数值仿真 | 无 | 航程提升约 3% | [ |
Table 1 The current status of cost-effectiveness eevaluation for intelligent morphing aircraft
序 号 | 飞行器类型 | 飞行器名称 | 变形方式 | 评估方法 | 优化方法 | 收益结果 | 文献 |
---|---|---|---|---|---|---|---|
1 | 无人机 | 1/3比例“雅克”-54无线电控无人机 | 伸缩翼 | 数值仿真 飞行试验 | 无 | 脱靶量和燃油消耗指标小幅度提升的同时,任务失败概率也增加 | [ |
2 | 10 kg无人机 | 变展长变弯度 | 数值仿真 | 无 | 显著增加了速域范围、提高了下滑性能、降低燃油消耗,加速和爬升等性能轻微降低 | [ | |
3 | 5 m跨径联翼无人机 | 主翼外部前掠和后掠、主翼上反角变化伸缩尾翼变形垂尾 | 数值仿真 | 无 | 最小水平转弯半径和拉起半径分别降低21%和14%,起飞和降落距离分别降低13%和11%,剩余动力增强8% | [ | |
4 | 25 kg无人机 | 变翼展和变弯度 | 数值仿真 | 无 | 变翼展变形,在质量增加不超过12%,变形具有优势;变弯度变形,在质量增加不超过3%,变形具有优势 | [ | |
5 | Olharapo无人机 | 伸缩翼 | 数值仿真 飞行试验 | 基于任务的多级设计优化 | 高速条件下能耗减少明显,起飞、爬升和巡航阶段的能耗增加 | [ | |
6 | “全球鹰”RQ4-A | 伸缩翼 | 数值仿真 | 无 | 随着翼展的增加,航时先增加后减少 | [ | |
7 | 15 kg Decode Mark IV无人机 | 变弯度副翼 | 数值仿真 飞行试验 | 无 | 变形机翼比传统机翼重54 g,滚转操纵能力增强,航时航程增加 | [ | |
8 | HCUAV RX-1无人机 | 变形小翼 | 数值仿真 | 无 | 集成变形小翼没有收益 | [ | |
9 | EVENT38小型电动无人机 | 伸缩翼 | 数值仿真 飞行试验 | 无 | 变形翼机构增加的质量抵消了气动效率的提高,没有收益 | [ | |
10 | 机载风能(AWE)无人机 | 变弯度 | 数值仿真 飞行试验 | 变形-任务全耦合优化方法 | 功率输出提高了7.8% | [ | |
11 | “全球鹰”RQ4-A | 单双翼变形 | 数值仿真 | 无 | 具有更好的起降性能和抗风性能,增加最大飞行高度和航程 | [ | |
12 | EURRICA无人机 | 变形小翼扭曲变形变形控制面 | 数值仿真 | 无 | 集成变形小翼和扭曲变形没有收益,集成变形控制面可以节省2.5%的燃油 | [ | |
13 | 客机 | 类似空客A321的单通道飞机 | 智能变形前缘 | 数值仿真 | 多学科综合概念飞机设计和优化(MICADO) | 2种智能变形前缘使最大起飞质量、轮挡油量、直接运行成本分别均增加 | [ |
14 | 运输机 | 224座混合翼体(HWB) | 自适应柔顺后缘 | 数值仿真 | 无 | 222座宽体运输机从自适应柔顺后缘中获益最大:空载质量减少2.6%,起飞质量减少2.4%,燃油燃烧减少3.0% | [ |
15 | 222座常规宽体运输机 | ||||||
16 | 154座常规窄体运输机 | ||||||
17 | 客机 | 支线喷气式飞机 | 手性结构变形翼尖 | 数值仿真 | 无 | 在满载1 000 km的典型任务剖面内,节省燃油消耗至少3% | [ |
18 | NASA通用研究模型 | 自适应后缘 | 数值仿真 | 高保真飞机构型多学科优化设计(MACH) | 机翼质量降低了12.4%,在7 730 n mile的全任务段自适应后缘燃油消耗降低了2.7% | [ | |
19 | 与空客A320-200飞机相当的单通道客机 | 增强型自适应下放前缘(EADN)、 自适应后缘(ATED)、 小翼主动后缘(WATE) | 数值仿真 地面试验 | 多学科综合概念飞机设计和优化(MICADO) | 3种智能变形技术和组合变形技术可以节省燃油量分别为2.5%,5.72%,3.03%,考虑典型机队,组合变形技术可节省燃油6.5% | [ | |
20 | 与空客A320-200飞机相当的单通道客机 | 小翼主动后缘 | 数值仿真 综合分析 | 无 | 小翼主动后缘可使结构质量下降约2%,升阻比提高0.3%,典型航空公司机队减少1%的燃油成本,但相比传统小翼,制造成本上涨15%,维护成本上涨5%,驱动机构维修成本上涨15% | [ | |
21 | 常规支线客机EMB9MOR | 变形翼尖 | 数值仿真 | 基于性能的多学科设计优化方法 | 变形翼尖可能不会带来任何优势,油耗减少不到1%,若考虑含驱动的完整的变形翼尖结构的质量,将导致更低的收益甚至负收益 | [ | |
22 | 通用长途商用飞机AX-1 | 折叠翼尖 | 数值仿真 | 无 | 如当展弦比增加到10.4时(基线飞机展弦比9.4),增加的质量低于基线飞机空重的6.5%,航程将提升,若超过6.5%,则航程反而会下降 | [ | |
23 | 运输机 | 远程商用运输机 | 变弯度连续后缘襟翼 | 数值仿真 | 无 | 巡航减阻2.6%,结构机翼质量减少了11.8%,从31 992 kg减少到28 217 kg,总燃料消耗从112 769 kg减少到107 457 kg,减少了4.7% | [ |
24 | 公务机 | Cessna Citation X公务机 | 变形平尾 自适应小翼 | 数值仿真 | 无 | 集成自适应小翼巡航时可以降低2.12%燃油消耗,集成变形平尾巡航时可以降低6.9%燃油消耗 | [ |
25 | 中型公务机 | 变形小翼 | 数值仿真 | 最大航程时减小6%燃油消耗 | [ | ||
26 | 客机 | CRJ700支线飞机 | 自适应小翼 | 数值仿真 | 无 | 巡航时燃油消耗减少了1.99%,爬升速度增加 | [ |
27 | 商用飞机 | 分布式变弧度后缘襟翼系统 | 数值仿真 | 多学科综合概念飞机设计和优化(MICADO) | 5种分布式变弧度后缘襟翼系统都有相当大的节省燃油的潜力,从7.4%~9.1% | [ | |
28 | 远程客机 | 变弯度 | 数值仿真 | 无 | 航程提升约 3% | [ |
指标 | 机会/优势 | 风险 |
---|---|---|
机翼结构和系统的质量 | 预计减少2% | 如果载荷分析不全,或者是小翼主动后缘系统不起作用,减少质量可能不到2% |
减阻 | 升阻比提高0.3% | 不能在全任务段内实现升阻比提高0.3% |
燃油消耗 | 对于典型航空公司机队的每日燃油减少多达 1% | 燃油减少达 1%的估计比较乐观 |
低速性能 | 降低进近速度,减小起飞和着陆距离 | 起飞距离的改善可以忽略不计 |
操纵品质 | 具有可以提高操纵性和乘客舒适性的潜力 | 没有分析对操纵品质的风险 |
变形 | 减少粘性压力阻力 | 在满足良好气动外形要求的作动器尺寸约束下,作动器输出力可能不满足变形所需力的要求 |
制造成本 | 增加15%的制造成本 | |
维修成本 | 增加5%的维修成本 | |
作动系统维修成本 | 增加15%的维修成本 | |
集成的作动系统的 和电子系统质量 | 增加10%的质量 | |
认证挑战 | 故障危害分析是作为 D32.1D 的一部分执行——已经考虑了一些具有挑战性的领域,例如系统设计和飞行载荷的相互作用 | 将技术集成到整个飞机平台上比SARISTU演示器所展示的更具挑战性,更详细地考虑法规和合规证明可能会减少一些变形收益 |
改造选项 | 使用小翼主动后缘技术减轻阵风载荷可以保护现有的机翼结构免受由于机翼伸展而增加的载荷 | 用于改造的翼主动后缘系统会明显更多 具有挑战性 |
Table 2 Evaluation of the performance benefits and risks of the winglet active trailing edge
指标 | 机会/优势 | 风险 |
---|---|---|
机翼结构和系统的质量 | 预计减少2% | 如果载荷分析不全,或者是小翼主动后缘系统不起作用,减少质量可能不到2% |
减阻 | 升阻比提高0.3% | 不能在全任务段内实现升阻比提高0.3% |
燃油消耗 | 对于典型航空公司机队的每日燃油减少多达 1% | 燃油减少达 1%的估计比较乐观 |
低速性能 | 降低进近速度,减小起飞和着陆距离 | 起飞距离的改善可以忽略不计 |
操纵品质 | 具有可以提高操纵性和乘客舒适性的潜力 | 没有分析对操纵品质的风险 |
变形 | 减少粘性压力阻力 | 在满足良好气动外形要求的作动器尺寸约束下,作动器输出力可能不满足变形所需力的要求 |
制造成本 | 增加15%的制造成本 | |
维修成本 | 增加5%的维修成本 | |
作动系统维修成本 | 增加15%的维修成本 | |
集成的作动系统的 和电子系统质量 | 增加10%的质量 | |
认证挑战 | 故障危害分析是作为 D32.1D 的一部分执行——已经考虑了一些具有挑战性的领域,例如系统设计和飞行载荷的相互作用 | 将技术集成到整个飞机平台上比SARISTU演示器所展示的更具挑战性,更详细地考虑法规和合规证明可能会减少一些变形收益 |
改造选项 | 使用小翼主动后缘技术减轻阵风载荷可以保护现有的机翼结构免受由于机翼伸展而增加的载荷 | 用于改造的翼主动后缘系统会明显更多 具有挑战性 |
1 | WEISSHAAR T A. Morphing Aircraft Technology-New Shapes for Aircraft Design[EB/OL].[2025-02-18]. . |
2 | REICH G, SANDERS B. Introduction to Morphing Aircraft Research[J]. Journal of Aircraft, 2007, 44(4): 1059. |
3 | BARBARINO S, BILGEN O, AJAJ R M, et al. A Review of Morphing Aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. |
4 | 崔尔杰, 白鹏, 杨基明. 智能变形飞行器的发展道路[J]. 航空制造技术, 2007(8): 38-41. |
CUI Erjie, BAI Peng, YANG Jiming. The Development Dath of Intelligent Morphing Aircraft[J]. Aeronautical Manufacturing Technology, 2007(8): 38-41. | |
5 | 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443. |
BAI Peng, CHEN Qian, XU Guowu, et al. Development Status of Key Technologies and Expectation About Smart Morphing Aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443. | |
6 | WEISSHAAR T A. Morphing Aircraft Systems: Historical Perspectives and Future Challenges[J]. Journal of Aircraft, 2013, 50(2): 337-353. |
7 | PERRY B III, COLE S R, MILLER G D. A Summary of the Active Flexible Wing Program[C]∥Dynamics Specialists Conference. Reston: AIAA, 1992: AIAA 1992-2080. |
8 | BONNEMA K L, SMITH S B. AFTI/F-111 Mission Adaptive Wing Flight Research Program[C]∥4th Flight Test Conference. Reston: AIAA, 1988: AIAA 1988-2118. |
9 | MCGOWAN A M R, WASHBURN A E, HORTA L G, et al. Recent Results from NASA's Morphing Project[C]∥Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. Bellingham: SPIE, 2002: 97-111. |
10 | SANDERS B, CROWE R, GARCIA E. Defense Advanced Research Projects Agency-Smart Materials and Structures Demonstration Program Overview[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 227-233. |
11 | KOTA S, FLICK P, COLLIER F. Flight Testing of FlexFloilTM Adaptive Compliant Trailing Edge[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: AIAA 2016-0036. |
12 | SULEMAN A, MONIZ P A. Active Aeroelastic Aircraft Structures[C]∥III European Conference on Computational Mechanics. Dordrecht: Springer Netherlands, 2006: 5. |
13 | FROTA J. NACRE Novel Aircraft Concepts[J]. The Aeronautical Journal, 2010, 114(1156): 399-404. |
14 | KÖNIG J, HELLSTROM T. The Clean Sky 'Smart Fixed Wing Aircraft Integrated Technology Demonstrator': Technology Targets and Project Status[C]∥Congress of the International Council of the Aeronautical Sciences. Nice:ICAS, 2010: 1-10. |
15 | Commission European. Smart High Lift Devices for Next Generation Wings[EB/OL]. (2019-07-16) [2025-02-18]. . |
16 | Commission European. Novel Air Vehicles Configurations: From Fluttering Wings to Morphing Flight[EB/OL].(2017-02-06)[2025-02-18]. . |
17 | Commission European. Combined Morphing Assessment Software Using Flight Envelope Data and Mission Based Morphing Prototype Wing Development[EB/OL].(2015-09-10)[2025-02-18].. |
18 | WÖLCKEN P C, KÖTTER A, NEWMAN B, et al. SARISTU: Six Years of Project Management[C]∥Smart Intelligent Aircraft Structures (SARISTU). Cham: Springer International Publishing, 2016: 1-40. |
19 | AMEDURI S, CONCILIO A, DIMINO I, et al. AIRGREEN2-Clean Sky 2 Programme: Adaptive Wing Technology Maturation, Challenges and Perspectives[C]∥ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2018: V001T04A023. |
20 | SAGGERE L, KOTA S. Static Shape Control of Smart Structures Using Compliant Mechanisms[J]. AIAA Journal, 1999, 37(5): 572-578. |
21 | SMITH K, BUTT J, VON SPAKOVSKY M R, et al. A Study of the Benefits of Using Morphing Wing Technology in Fighter Aircraft Systems[C]∥39th AIAA Thermophysics Conference. Reston: AIAA, 2007: AIAA 2007-4616. |
22 | 张尧, 张婉, 别大卫, 等. 智能变体飞行器研究综述与发展趋势分析[J]. 飞航导弹, 2021(6): 14-23. |
ZHANG Yao, ZHANG Wan, BIE Dawei, et al. A Review of the Research and Development Trend Analysis of Intelligent Mophing Aircraft[J]. Aerodynamic Missile Journal, 2021(6): 14-23. | |
23 | 张旭辉, 解春雷, 刘思佳, 等. 智能变形飞行器发展需求及难点分析[J]. 航空学报, 2023, 44(21): 1-27. |
ZHANG Xuhui, XIE Chunlei, LIU Sijia, et al. Development Needs and Difficulty Analysis for Smart Morphing Aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 1-27. | |
24 | 王彬文, 杨宇, 钱战森, 等. 机翼变弯度技术研究进展[J]. 航空学报, 2022, 43(1): 136-155. |
WANG Binwen, YANG Yu, QIAN Zhansen, et al. Technical Development of Variable Camber Wing: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 136-155. | |
25 | AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent Developments in the Aeroelasticity of Morphing Aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. |
26 | 李小飞, 张梦杰, 王文娟, 等. 变弯度机翼技术发展研究[J]. 航空科学技术, 2020, 31(2): 12-24. |
LI Xiaofei, ZHANG Mengjie, WANG Wenjuan, et al. Research on Variable Camber Wing Technology Development[J]. Aeronautical Science & Technology, 2020, 31(2): 12-24. | |
27 | 李士途, 艾俊强, 任远春, 等. 变弯度机翼前后缘结构技术发展与应用前景[J]. 航空科学技术, 2022, 33(12): 31-40. |
LI Shitu, AI Junqiang, REN Yuanchun, et al. Development and Application Prospect of Variable Leading and Trailing Edge Structure Technology[J]. Aeronautical Science & Technology, 2022, 33(12): 31-40. | |
28 | 李斌, 张泽南, 贾飞, 等. 变翼尖机翼技术研究现状与发展趋势[J]. 航空学报, 2024, 45(19): 161-186. |
LI Bin, ZHANG Zenan, JIA Fei, et al. Research Status and Development Trend of Morphing Wingtip Technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 161-186. | |
29 | LI Daochun, ZHAO Shiwei, RONCH A DA, et al. A Review of Modelling and Analysis of Morphing Wings[J]. Progress in Aerospace Sciences, 2018, 100: 46-62. |
30 | 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 424-441. |
RAN Maopeng, WANG Chengcai, LIU Huahua, et al. Research Status and Future Development of Morphing Aircraft Control Technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 424-441. | |
31 | 王鹏, 陈浩岚, 鲍存余, 等. 变形飞行器建模及控制方法研究综述[J]. 宇航学报, 2022, 43(7): 853-865. |
WANG Peng, CHEN Haolan, BAO Cunyu, et al. Review on Modeling and Control Methods of Morphing Vehicle[J]. Journal of Astronautics, 2022, 43(7): 853-865. | |
32 | 王青, 刘华华. 变体飞行器智能自主决策与控制[J]. 现代防御技术, 2020, 48(6): 5-11. |
WANG Qing, LIU Huahua. Intelligent Autonomous Decision-Making and Control of Morphing Aircraft[J]. Modern Defence Technology, 2020, 48(6): 5-11. | |
33 | LEYLEK E A, COSTELLO M F. Benefits of Autonomous Morphing Aircraft in Loiter and Attack Missions[C]∥AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2010: AIAA 2010-7507. |
34 | VALE J, LAU F, SULEMAN A. Optimal Control and Energy Balance Evaluation of a Morphing Aircraft[C]∥54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013: AIAA 2013-1453. |
35 | CARDOSO J, SULEMAN A, COOPER J E. Performance Evaluation of a Morphing Joined Wing Aircraft Configuration[C]∥54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013: AIAA 2013-1450. |
36 | BEAVERSTOCK C S, WOODS B K S, FINCHAM J H S M, et al. Performance Comparison Between Optimised Camber and Span for a Morphing Wing[J]. Aerospace, 2015, 2(3): 524-554. |
37 | SANTOS P, GAMBOA P. Evaluation of Energy Required for Flight by a UAV Fitted with a Variable-Span Wing Performing a Given Mission Profile[C]∥AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2015: AIAA 2015-2391. |
38 | PRAKASH T. Feasibility Analysis of Span Extension of Morphing Hale UAV Wing[C]∥30th Congress of the International Council of the Aeronautical Sciences. Bonn: ICAS, 2016: 1-6. |
39 | CHANZY Q, KEANE A J. Analysis and Experimental Validation of Morphing UAV Wings[J]. The Aeronautical Journal, 2018, 122(1249): 390-408. |
40 | PANAGIOTOU P, EFTHYMIADIS M, MITRIDIS D, et al. A CFD-Aided Investigation of the Morphing Winglet Concept for the Performance Optimization of Fixed-Wing MALE UAVs[C]∥2018 Applied Aerodynamics Conference. Reston: AIAA, 2018: AIAA 2018-4220. |
41 | ALULEMA V, VALENCIA E, TOAPANTA E. Performance Assessment of a Variable-Span Morphing Wing Small UAV for High Altitude Surveillance Missions[C]∥AIAA Propulsion and Energy 2020 Forum. Reston: AIAA, 2020: AIAA 2020-3962. |
42 | FASEL U, TISO P, KEIDEL D, et al. Concurrent Design and Flight Mission Optimization of Morphing Airborne Wind Energy Wings[J]. AIAA Journal, 2021, 59(4): 1254-1268. |
43 | GUO Tingyu, FENG Liangtao, ZHU Chenhua, et al. Conceptual Research on a Mono-Biplane Aerodynamics-Driven Morphing Aircraft[J]. Aerospace, 2022, 9(7): 380. |
44 | MITRIDIS D, PAPANIKOLATOS N, PANAGIOTOU P, et al. Morphing Technologies Assessment on a Tactical BWB UAV Reference Platform[C]∥AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: AIAA 2022-1985. |
45 | LAMMERING T, ANTON E, HENKE R. Technology Assessment on Aircraft-Level: Modeling of Innovative Aircraft Systems in Conceptual Aircraft Design[C]∥10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2010: AIAA 2010-9072. |
46 | LAMMERING T, RISSE K, FRANZ K, et al. Assessment of an Innovative Morphing Leading Edge Considering Uncertainties in Conceptual Design[C]∥12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2012: AIAA 2012-5588. |
47 | PETER F, LAMMERING T, RISSE K, et al. Economic Assessment of Morphing Leading Edge Systems in Conceptual Aircraft Design[C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: AIAA 2013-145. |
48 | WAKAYAMA S, WHITE E V. Evaluation of Adaptive Compliant Trailing Edge Technology[C]∥33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015: AIAA 2015-3289. |
49 | COOPER J E, CHEKKAL I, CHEUNG R C M, et al. Design of a Morphing Wingtip[J]. Journal of Aircraft, 2015, 52(5): 1394-1403. |
50 | BURDETTE D A, KENWAY G K W, Zhoujie LÜ, et al. Aerostructural Design Optimization of an Adaptive Morphing Trailing Edge Wing[C]∥56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015: AIAA 2015-1129. |
51 | PETER F, STUMPF E, CAROSSA G M, et al. Morphing Value Assessment on Overall Aircraft Level[C]∥Smart Intelligent Aircraft Structures (SARISTU). Cham: Springer International Publishing, 2016: 859-871. |
52 | HERRING M. Evaluation of the Performance Benefits of the Winglet Active Trailing Edge in AS03[C]∥Smart Intelligent Aircraft Structures (SARISTU). Cham: Springer International Publishing, 2016: 333-345. |
53 | AFONSO F, VALE J, LAU F, et al. Performance Based Multidisciplinary Design Optimization of Morphing Aircraft[J]. Aerospace Science and Technology, 2017, 67: 1-12. |
54 | HAYES D, LONE M, WHIDBORNE J, et al. Evaluating the Rationale for Folding Wing Tips Comparing the Exergy and Breguet Approaches[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017: AIAA 2017-0464. |
55 | FUJIWARA G E, NGUYEN N T, LIVNE E, et al. Aerostructural Design Optimization of a Flexible Wing Aircraft with Continuous Morphing Trailing Edge[C]∥2018 Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2018: AIAA 2018-3571. |
56 | SEGUI M, MANTILLA M, GHAZI G, et al. New Economical Cruise Methodology for the Cessna Citation X Business Jet by an Original Morphing Horizontal Tail Application[C]∥2018 Modeling and Simulation Technologies Conference. Reston: AIAA, 2018: AIAA 2018-3895. |
57 | SEGUI M, BEZIN S, BOTEZ R M. Cessna Citation X Performances Improvement by an Adaptive Winglet During the Cruise Flight[J]. World Academy of Science, Engineering and Technology International Journal of Aerospace and Mechanical Engineering, 2018, 12(4): 351-358. |
58 | EGUEA J P, PEREIRA GOUVEIA DA SILVA G, MARTINI CATALANO F. Fuel Efficiency Improvement on a Business Jet Using a Camber Morphing Winglet Concept[J]. Aerospace Science and Technology, 2020, 96: 105542. |
59 | SEGUI M, ABEL F, BOTEZ R M, et al. Cruise Performances Improvement of the Regional Jet CRJ700 Using an Adaptive Winglet[C]∥AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: AIAA 2022-1039. |
60 | STEPHAN R, SCHNEIDERS N, SCHUELTKE F, et al. Evaluation of a Distributed Variable-Camber Trailing-Edge Flap System at Preliminary Aircraft Design Stage[C]∥AIAA AVIATION 2022 Forum. Reston: AIAA, 2022: AIAA 2022-3519. |
61 | 张珊珊, 邱岳恒, 高亚奎, 等. 基于系统工程的巡航阶段机翼变弯度设计[J]. 宇航学报, 2024, 45(12): 1871-1885. |
ZHANG Shanshan, QIU Yueheng, GAO Yakui, et al. Design of Variable Camber Wing for Cruise Flight Phase based on Systems Engineering[J]. Journal of Astronautics, 2024, 45(12): 1871-1885. | |
62 | SKILLEN M D, CROSSLEY W A. Conceptual Morphing Aircraft Sizing Using a Multi-Level Optimization Strategy[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: AIAA 2008-166. |
63 | CROSSLEY W A, SKILLEN M D, FROMMER J B, et al. Morphing Aircraft Sizing Using Design Optimization[J]. Journal of Aircraft, 2011, 48(2): 612-622. |
64 | DE BREUKER R, ABDALLA M M, GÜRDAL Z. A Generic Morphing Wing Analysis and Design Framework[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10): 1025-1039. |
65 | WERTER N P M, DE BREUKER R, BEAVERSTOCK C S, et al. Two-level Conceptual Design of Morphing Wings[C]∥54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013: AIAA 2013-1720. |
66 | WERTER N P M, DE BREUKER R. A Framework for the Aeroelastic Analysis and Design of Generic Morphing Wings[C]∥23rd AIAA/AHS Adaptive Structures Conference. Reston: AIAA, 2015: AIAA 2015-0268. |
67 | DIODATI G, CONCILIO A, RICCI S, et al. Estimated Performance of an Adaptive Trailing-Edge Device Aimed at Reducing Fuel Consumption on a Medium-Size Aircraft[C]∥Industrial and Commercial Applications of Smart Structures Technologies 2013. Bellingham: SPIE, 2013: 86900E. |
68 | DE GASPARI A, GILARDELLI A, RICCI S, et al. Design of a Leading Edge Morphing Based on Compliant Structures for a Twin-Prop Regional Aircraft[C]∥2018 AIAA/AHS Adaptive Structures Conference. Reston: AIAA, 2018: AIAA 2018-1063. |
69 | RADESPIEL R, SEMAAN R. Notes on Numerical Fluid Mechanics and Multidisciplinary Design[M]. Germany: RWTH Aachen University, 2019: 387-404. |
70 | AFONSO S, VALE J, LAU F, et al. Multidisciplinary Performance Based Optimization of Morphing Aircraft[C]∥22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston: AIAA, 2014: AIAA 2014-0761. |
71 | ALBUQUERQUE P F, GAMBOA P V, SILVESTRE M A. Multidisciplinary and Multilevel Aircraft Design Methodology Using Enhanced Collaborative Optimization[C]∥16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2015: AIAA 2015-2650. |
72 | ALBUQUERQUE P F, GAMBOA P V, SILVESTRE M A. Mission-Based Multidisciplinary Aircraft Design Optimization Methodology Tailored for Adaptive Technologies[J]. Journal of Aircraft, 2018, 55(2): 755-770. |
73 | KAO J Y, CLARK D L Jr, WHITE T L, et al. Conceptual Multidisciplinary Design and Optimization of Morphing Aircraft[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019: AIAA 2019-0175. |
74 | JASA J P, HWANG J T, MARTINS J R R A. Design and Trajectory Optimization of a Morphing Wing Aircraft[C]∥2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018: AIAA 2018-1382. |
75 | HWANG J T, MARTINS J R R A. GeoMACH: Geometry-Centric MDAO of Aircraft Configurations with High Fidelity[C]∥12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2012: AIAA 2012-5605. |
76 | RISSE K, ANTON E, LAMMERING T, et al. An Integrated Environment for Preliminary Aircraft Design and Optimization[C]∥53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012: AIAA 2012-1675. |
77 | KENWAY G K W, KENNEDY G J, MARTINS J R R A. Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations[J]. AIAA Journal, 2014, 52(5): 935-951. |
78 | HWANG J T, KENWAY G K W, MARTINS J R R A. Geometry and Structural Modeling for High-Fidelity Aircraft Conceptual Design Optimization[C]∥15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2014: AIAA 2014-2041. |
79 | GRAY J S, HWANG J T, MARTINS J R R A, et al. OpenMDAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization[J]. Structural and Multidisciplinary Optimization, 2019, 59(4): 1075-1104. |
80 | BURDETTE D A, KENWAY G K W, MARTINS J R R A. Aerostructural Design Optimization of a Continuous Morphing Trailing Edge Aircraft for Improved Mission Performance[C]∥17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2016: AIAA 2016-3209. |
81 | BURDETTE D A, KENWAY G K W, MARTINS J R R A. Performance Evaluation of a Morphing Trailing Edge Using Multipoint Aerostructural Design Optimization[C]∥57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016: AIAA 2016-0159. |
82 | BURDETTE D A Jr. High-Fidelity Aerostructural Design Optimization of Transport Aircraft with Continuous Morphing Trailing Edge Technology[D]. Michigan: The University of Michigan, 2017. |
83 | SCHÜLTKE F, AIGNER B, EFFING T, et al. MICADO: Overview of Recent Developments within the Conceptual Aircraft Design and Optimization Environment[C]∥Deutscher Luft- und Raumfahrtkongress 2020. Köln:DLR, 2021: 1-15. |
84 | 刘虎, 罗明强, 孙康文. 飞机总体设计[M]. 北京: 北京航空航天大学出版社, 2019: 319. |
LIU Hu, LUO Mingqiang, SUN Kangwen. Aircraft Overall Design[M]. Beijing: Beihang University Press, 2019: 319. |
[1] | WANG Qing, LIU Hua-hua. Intelligent Autonomous Decision-Making and Control of Morphing Aircraft [J]. Modern Defense Technology, 2020, 48(6): 5-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||