Modern Defense Technology ›› 2025, Vol. 53 ›› Issue (3): 49-56.DOI: 10.3969/j.issn.1009-086x.2025.03.006

• AIRCRAFT TECHNOLOGY • Previous Articles     Next Articles

Research on Maneuvering Flight Action Recognition Method Based on Improved Bop Algorithm

Peng LUO, Ronghua HU, Yang SHU   

  1. Institute of Systems Engineering,CAEP,Mianyang 621900,China
  • Received:2024-03-12 Revised:2024-06-04 Online:2025-06-28 Published:2025-07-01
  • Contact: Ronghua HU

基于改进BoP算法的机动飞行动作识别方法研究

罗鹏, 胡荣华, 舒杨   

  1. 中国工程物理研究院 总体工程研究所,四川 绵阳 621900
  • 通讯作者: 胡荣华
  • 作者简介:罗鹏(1992-),男,四川绵阳人。工程师,硕士,研究方向为控制系统设计
  • 基金资助:
    中国工程物理研究院创新发展基金(PY20200053)

Abstract:

The recognition of flight maneuvering is primarily utilized for assessing pilot training quality, aiding decision-making in aerial combat, and other related scenarios. This study focuses on realizing flight maneuver recognition through the utilization of the bag of patterns (BoP) algorithm, which has been enhanced to address deficiencies in multi-dimensional time series scenarios. The improved algorithm extracts features from flight attitude data and analyze flight maneuver recognition. Simulation results demonstrate that the enhanced BoP algorithm enhances the accuracy and confidence of flight maneuver recognition, while effectively characterizing specific flight maneuvers through extracted parameter features.

Key words: pattern recognition, multidimensional time series, maneuvering flight maneuvers, feature dimension reduction, flight training

摘要:

飞行机动动作识别主要用于飞行员训练质量评估、飞行作战时的辅助决策等场景。为实现基于飞行参数的飞行机机动识别,研究了模式袋(bag of patterns,BoP)算法,针对算法在多维时间序列应用中的不足进行了改进,利用改进后的算法对飞行姿态数据进行特征提取,并进行飞行机动识别分析。识别仿真结果表明,改进后的BoP算法能提高飞行机动识别的准确率和置信度,通过该算法提取的飞行参数特征能更好地表征具体的飞行机动动作。

关键词: 模式识别, 多维时间序列, 机动飞行动作, 特征降维, 飞行训练

CLC Number: