现代防御技术 ›› 2025, Vol. 53 ›› Issue (3): 74-81.DOI: 10.3969/j.issn.1009-086x.2025.03.009

• 飞行器技术 • 上一篇    下一篇

基于BOA-BP神经网络的四旋翼飞行器路径优化

王舒玮1, 李嘉2, 冯健3, 岳彩宾4   

  1. 1.山西大同大学 机电工程学院,山西 大同 037000
    2.杭州汽车高级技工学校,浙江 杭州 310011
    3.山西省大同市云州区审计局,山西 大同 037000
    4.内蒙古包钢钢联股份有限公司,内蒙古 包头 010400
  • 收稿日期:2023-01-13 修回日期:2024-02-22 出版日期:2025-06-28 发布日期:2025-07-01
  • 作者简介:王舒玮(1990—),女,河北定州人。讲师,硕士,研究方向为机械工程、数控加工、智能制造。
  • 基金资助:
    山西省基础研究计划(202103021224313);山西大同大学2021年度科研专项课题项目(2021YGZX53);山西省高等学校科技创新项目(2024L321)

Optimization of Path Error for Quadcopter Based on BOA-BP Neural Network

Shuwei WANG1, Jia LI2, Jian FENG3, Caibin YUE4   

  1. 1.College of Mechanical and Electrical Engineering,Shanxi Datong University,Datong 037000,China
    2.Hangzhou Automobile Senior Technical School,Hangzhou 310011,China
    3.Yunzhou District Auditing Bureau,Datong 037000,China
    4.Inner Mongolia Baogang United Steel Co. ,Ltd. ,Baotou 010400,China
  • Received:2023-01-13 Revised:2024-02-22 Online:2025-06-28 Published:2025-07-01

摘要:

针对四旋翼飞行器在多障碍物环境中飞行时容易出现路径规划不准确的问题,提出了基于蝴蝶算法(BOA)的BP神经网络优化方法。将四旋翼飞行器在设定路径中的所有途经点作为神经网络的训练样本,通过BOA-BP算法对神经网络进行训练,从而确定了最佳飞行路径。仿真结果表明,与传统的BOA算法相比,所提出的BOA-BP算法模型可以有效减小四旋翼飞行器路径的误差,均方根误差可从1.60%降低到0.003%。

关键词: 四旋翼, 飞行器, 蝴蝶优化算法, BP神经网络, 路径优化, 训练样本, 误差处理

Abstract:

An optimization method for BP neural networks based on the butterfly optimization algorithm (BOA) is proposed to address the issue of inaccurate path planning for quadcopters in multi-obstacle environments. The points of the quadcopter along the designated path are used as training samples for the neural network, and the BOA-BP algorithm is employed to train the network to determine the optimal flight path. The simulation results show that the proposed BOA-BP model effectively reduces the path error of the quadcopter compared to the traditional BOA algorithm, with the root mean square error decreasing from 1.60% to 0.003%.

Key words: quadcopter, aircraft, butterfly optimization algorithm(BOA), back propagation(BP) neural network, path optimization, training sample, error processing

中图分类号: