现代防御技术 ›› 2025, Vol. 53 ›› Issue (4): 64-73.DOI: 10.3969/j.issn.1009-086x.2025.04.007
收稿日期:
2024-03-25
修回日期:
2024-07-15
出版日期:
2025-08-28
发布日期:
2025-09-02
作者简介:
赵擎天(1986-),男,山东高唐人。博士生,研究方向为智能化装备体系设计与评估。
Qingtian ZHAO, Liwei LI, Yu ZHANG, Xin CHEN, Lizhi HOU, Zhen LEI
Received:
2024-03-25
Revised:
2024-07-15
Online:
2025-08-28
Published:
2025-09-02
摘要:
随着人工智能技术(artificial intelligence,AI)在军事领域的深入应用,如何科学评估因AI技术缺陷给智能武器装备造成的脆弱性,成为影响智能武器装备发展的重要问题。本研究在对智能武器装备脆弱性深入分析的基础上,构建了14个脆弱性评估指标;采用层次分析法和熵值法结合的组合赋权方法计算指标权重,通过云模型评估方法将定性指标评估中的模糊性和随机性转化为可量化的云特征,通过观察和计算比较综合评估云与各标准云之间的相似度得出评估结论。以某型无人机系统的脆弱性评估为案例,证明了所提方法的可行性,为评估智能武器装备脆弱性探索了新手段。
中图分类号:
赵擎天, 李立伟, 张瑜, 陈鑫, 侯立志, 雷震. 基于云模型的智能武器装备脆弱性评估[J]. 现代防御技术, 2025, 53(4): 64-73.
Qingtian ZHAO, Liwei LI, Yu ZHANG, Xin CHEN, Lizhi HOU, Zhen LEI. Assessment of Vulnerability in Intelligent Weapon Systems Based on Cloud Model[J]. Modern Defense Technology, 2025, 53(4): 64-73.
矩阵阶数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 |
表1 平均随机一致性指标数值
Table 1 Average random consistency index value
矩阵阶数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 |
评语 | 区间 | Ex | En | He |
---|---|---|---|---|
可忽略 | [0,2] | 0 | 1.04 | 0.26 |
低 | (2,4] | 3.09 | 0.64 | 0.16 |
中等 | (4,6] | 5.00 | 0.39 | 0.10 |
高 | (6,8] | 6.91 | 0.64 | 0.16 |
很高 | (8,10] | 10.00 | 1.04 | 0.26 |
表2 标准云模型
Table 2 Standard cloud model
评语 | 区间 | Ex | En | He |
---|---|---|---|---|
可忽略 | [0,2] | 0 | 1.04 | 0.26 |
低 | (2,4] | 3.09 | 0.64 | 0.16 |
中等 | (4,6] | 5.00 | 0.39 | 0.10 |
高 | (6,8] | 6.91 | 0.64 | 0.16 |
很高 | (8,10] | 10.00 | 1.04 | 0.26 |
专家 序号 | 学历 得分 | 职称 得分 | 工作 年限 | 熟悉 程度 | 总得分 | 最终 权重 |
---|---|---|---|---|---|---|
1 | 1 | 1 | 3 | 1 | 6 | 0.04 |
2 | 1 | 3 | 6 | 6 | 16 | 0.10 |
3 | 3 | 1 | 3 | 3 | 10 | 0.06 |
4 | 3 | 3 | 3 | 6 | 15 | 0.09 |
5 | 3 | 3 | 3 | 3 | 12 | 0.08 |
6 | 3 | 6 | 6 | 6 | 21 | 0.13 |
7 | 3 | 6 | 6 | 3 | 18 | 0.11 |
8 | 6 | 3 | 6 | 6 | 21 | 0.13 |
9 | 6 | 3 | 3 | 3 | 15 | 0.09 |
10 | 6 | 6 | 6 | 6 | 24 | 0.15 |
表3 专家自身权重
Table 3 Expert’s own weight
专家 序号 | 学历 得分 | 职称 得分 | 工作 年限 | 熟悉 程度 | 总得分 | 最终 权重 |
---|---|---|---|---|---|---|
1 | 1 | 1 | 3 | 1 | 6 | 0.04 |
2 | 1 | 3 | 6 | 6 | 16 | 0.10 |
3 | 3 | 1 | 3 | 3 | 10 | 0.06 |
4 | 3 | 3 | 3 | 6 | 15 | 0.09 |
5 | 3 | 3 | 3 | 3 | 12 | 0.08 |
6 | 3 | 6 | 6 | 6 | 21 | 0.13 |
7 | 3 | 6 | 6 | 3 | 18 | 0.11 |
8 | 6 | 3 | 6 | 6 | 21 | 0.13 |
9 | 6 | 3 | 3 | 3 | 15 | 0.09 |
10 | 6 | 6 | 6 | 6 | 24 | 0.15 |
一级指标 | 权重 | 二级指标 | 权重 | 综合权重 |
---|---|---|---|---|
V1 | 0.396 4 | V11 | 0.448 6 | 0.177 8 |
V12 | 0.145 6 | 0.057 7 | ||
V13 | 0.056 2 | 0.022 3 | ||
V14 | 0.349 5 | 0.138 5 | ||
V2 | 0.083 8 | V21 | 0.675 7 | 0.056 6 |
V22 | 0.324 3 | 0.027 2 | ||
V3 | 0.047 6 | V31 | 0.444 3 | 0.021 1 |
V32 | 0.555 7 | 0.026 5 | ||
V4 | 0.296 4 | V41 | 0.569 8 | 0.168 8 |
V42 | 0.430 2 | 0.127 5 | ||
V5 | 0.175 8 | V51 | 0.203 8 | 0.035 8 |
V52 | 0.118 2 | 0.020 8 | ||
V53 | 0.220 3 | 0.038 7 | ||
V54 | 0.457 6 | 0.080 4 |
表4 指标主观评价权重
Table 4 Subjective evaluation weight for indicators
一级指标 | 权重 | 二级指标 | 权重 | 综合权重 |
---|---|---|---|---|
V1 | 0.396 4 | V11 | 0.448 6 | 0.177 8 |
V12 | 0.145 6 | 0.057 7 | ||
V13 | 0.056 2 | 0.022 3 | ||
V14 | 0.349 5 | 0.138 5 | ||
V2 | 0.083 8 | V21 | 0.675 7 | 0.056 6 |
V22 | 0.324 3 | 0.027 2 | ||
V3 | 0.047 6 | V31 | 0.444 3 | 0.021 1 |
V32 | 0.555 7 | 0.026 5 | ||
V4 | 0.296 4 | V41 | 0.569 8 | 0.168 8 |
V42 | 0.430 2 | 0.127 5 | ||
V5 | 0.175 8 | V51 | 0.203 8 | 0.035 8 |
V52 | 0.118 2 | 0.020 8 | ||
V53 | 0.220 3 | 0.038 7 | ||
V54 | 0.457 6 | 0.080 4 |
一级指标 | 权重 | 二级指标 | 熵值 | 差异系数 | 权重 |
---|---|---|---|---|---|
V1 | 0.316 7 | V11 | 0.840 1 | 0.159 9 | 0.088 3 |
V12 | 0.883 5 | 0.116 5 | 0.064 3 | ||
V13 | 0.887 0 | 0.113 0 | 0.062 4 | ||
V14 | 0.815 7 | 0.184 3 | 0.101 7 | ||
V2 | 0.107 0 | V21 | 0.877 6 | 0.122 4 | 0.067 5 |
V22 | 0.928 5 | 0.071 5 | 0.039 5 | ||
V3 | 0.160 6 | V31 | 0.831 3 | 0.168 7 | 0.093 1 |
V32 | 0.877 6 | 0.122 4 | 0.067 5 | ||
V4 | 0.157 9 | V41 | 0.814 6 | 0.185 4 | 0.102 3 |
V42 | 0.899 3 | 0.100 7 | 0.055 6 | ||
V5 | 0.257 8 | V51 | 0.820 5 | 0.179 5 | 0.099 1 |
V52 | 0.945 4 | 0.054 6 | 0.030 1 | ||
V53 | 0.915 2 | 0.084 8 | 0.046 8 | ||
V54 | 0.851 8 | 0.148 2 | 0.081 8 |
表5 指标客观评价权重
Table 5 Objective evaluation weight for indicators
一级指标 | 权重 | 二级指标 | 熵值 | 差异系数 | 权重 |
---|---|---|---|---|---|
V1 | 0.316 7 | V11 | 0.840 1 | 0.159 9 | 0.088 3 |
V12 | 0.883 5 | 0.116 5 | 0.064 3 | ||
V13 | 0.887 0 | 0.113 0 | 0.062 4 | ||
V14 | 0.815 7 | 0.184 3 | 0.101 7 | ||
V2 | 0.107 0 | V21 | 0.877 6 | 0.122 4 | 0.067 5 |
V22 | 0.928 5 | 0.071 5 | 0.039 5 | ||
V3 | 0.160 6 | V31 | 0.831 3 | 0.168 7 | 0.093 1 |
V32 | 0.877 6 | 0.122 4 | 0.067 5 | ||
V4 | 0.157 9 | V41 | 0.814 6 | 0.185 4 | 0.102 3 |
V42 | 0.899 3 | 0.100 7 | 0.055 6 | ||
V5 | 0.257 8 | V51 | 0.820 5 | 0.179 5 | 0.099 1 |
V52 | 0.945 4 | 0.054 6 | 0.030 1 | ||
V53 | 0.915 2 | 0.084 8 | 0.046 8 | ||
V54 | 0.851 8 | 0.148 2 | 0.081 8 |
一级指标 | 主观 权重 | 客观 权重 | 综合 权重 | 二级指标 | 主观 权重 | 客观 权重 | 综合 权重 |
---|---|---|---|---|---|---|---|
V1 | 0.396 4 | 0.316 6 | 0.535 8 | V11 | 0.177 8 | 0.088 3 | 0.195 0 |
V12 | 0.057 7 | 0.064 3 | 0.046 1 | ||||
V13 | 0.022 3 | 0.062 4 | 0.017 3 | ||||
V14 | 0.138 5 | 0.101 7 | 0.175 2 | ||||
V2 | 0.083 8 | 0.107 0 | 0.038 3 | V21 | 0.056 6 | 0.067 5 | 0.047 5 |
V22 | 0.027 2 | 0.039 5 | 0.013 3 | ||||
V3 | 0.047 6 | 0.160 7 | 0.032 6 | V31 | 0.021 1 | 0.093 1 | 0.024 5 |
V32 | 0.026 5 | 0.067 5 | 0.022 2 | ||||
V4 | 0.296 4 | 0.157 9 | 0.199 8 | V41 | 0.168 8 | 0.102 3 | 0.214 7 |
V42 | 0.127 5 | 0.055 6 | 0.088 0 | ||||
V5 | 0.175 8 | 0.257 8 | 0.193 5 | V51 | 0.035 8 | 0.099 1 | 0.044 1 |
V52 | 0.020 8 | 0.030 1 | 0.007 8 | ||||
V53 | 0.038 7 | 0.046 8 | 0.022 5 | ||||
V54 | 0.080 4 | 0.081 8 | 0.081 8 |
表6 综合权重
Table 6 Composite weight of indicators
一级指标 | 主观 权重 | 客观 权重 | 综合 权重 | 二级指标 | 主观 权重 | 客观 权重 | 综合 权重 |
---|---|---|---|---|---|---|---|
V1 | 0.396 4 | 0.316 6 | 0.535 8 | V11 | 0.177 8 | 0.088 3 | 0.195 0 |
V12 | 0.057 7 | 0.064 3 | 0.046 1 | ||||
V13 | 0.022 3 | 0.062 4 | 0.017 3 | ||||
V14 | 0.138 5 | 0.101 7 | 0.175 2 | ||||
V2 | 0.083 8 | 0.107 0 | 0.038 3 | V21 | 0.056 6 | 0.067 5 | 0.047 5 |
V22 | 0.027 2 | 0.039 5 | 0.013 3 | ||||
V3 | 0.047 6 | 0.160 7 | 0.032 6 | V31 | 0.021 1 | 0.093 1 | 0.024 5 |
V32 | 0.026 5 | 0.067 5 | 0.022 2 | ||||
V4 | 0.296 4 | 0.157 9 | 0.199 8 | V41 | 0.168 8 | 0.102 3 | 0.214 7 |
V42 | 0.127 5 | 0.055 6 | 0.088 0 | ||||
V5 | 0.175 8 | 0.257 8 | 0.193 5 | V51 | 0.035 8 | 0.099 1 | 0.044 1 |
V52 | 0.020 8 | 0.030 1 | 0.007 8 | ||||
V53 | 0.038 7 | 0.046 8 | 0.022 5 | ||||
V54 | 0.080 4 | 0.081 8 | 0.081 8 |
一级指标 | Ex | En | He | 二级指标 | Ex | En | He |
---|---|---|---|---|---|---|---|
V1 | 7.1 | 1.491 3 | 0.408 1 | V11 | 7.5 | 1.253 3 | 0.200 8 |
V12 | 6.6 | 1.854 9 | 0.712 3 | ||||
V13 | 5.6 | 2.155 7 | 0.616 7 | ||||
V14 | 7.0 | 1.754 6 | 0.641 9 | ||||
V2 | 6.4 | 1.977 9 | 0.761 4 | V21 | 6.5 | 2.005 3 | 0.795 2 |
V22 | 5.9 | 1.629 3 | 0.332 0 | ||||
V3 | 5.9 | 1.833 0 | 0.485 2 | V31 | 5.9 | 1.629 3 | 0.332 0 |
V32 | 5.9 | 2.080 5 | 0.671 3 | ||||
V4 | 7.1 | 1.661 2 | 0.255 1 | V41 | 7.2 | 1.704 5 | 0.246 8 |
V42 | 6.9 | 1.403 7 | 0.304 4 | ||||
V5 | 6.4 | 1.761 2 | 0.554 0 | V51 | 5.9 | 1.854 9 | 0.821 0 |
V52 | 5.8 | 1.203 2 | 0.534 5 | ||||
V53 | 6.2 | 1.554 1 | 0.454 9 | ||||
V54 | 6.8 | 1.754 6 | 0.484 1 |
表7 评估云数字特征
Table 8 Evaluation of cloud numerical characteristics
一级指标 | Ex | En | He | 二级指标 | Ex | En | He |
---|---|---|---|---|---|---|---|
V1 | 7.1 | 1.491 3 | 0.408 1 | V11 | 7.5 | 1.253 3 | 0.200 8 |
V12 | 6.6 | 1.854 9 | 0.712 3 | ||||
V13 | 5.6 | 2.155 7 | 0.616 7 | ||||
V14 | 7.0 | 1.754 6 | 0.641 9 | ||||
V2 | 6.4 | 1.977 9 | 0.761 4 | V21 | 6.5 | 2.005 3 | 0.795 2 |
V22 | 5.9 | 1.629 3 | 0.332 0 | ||||
V3 | 5.9 | 1.833 0 | 0.485 2 | V31 | 5.9 | 1.629 3 | 0.332 0 |
V32 | 5.9 | 2.080 5 | 0.671 3 | ||||
V4 | 7.1 | 1.661 2 | 0.255 1 | V41 | 7.2 | 1.704 5 | 0.246 8 |
V42 | 6.9 | 1.403 7 | 0.304 4 | ||||
V5 | 6.4 | 1.761 2 | 0.554 0 | V51 | 5.9 | 1.854 9 | 0.821 0 |
V52 | 5.8 | 1.203 2 | 0.534 5 | ||||
V53 | 6.2 | 1.554 1 | 0.454 9 | ||||
V54 | 6.8 | 1.754 6 | 0.484 1 |
评语 | 区间 | 相似度 | 备注 |
---|---|---|---|
可忽略 | [0,2] | 0.001 0 | |
低 | (2,4] | 0.019 5 | |
中等 | (4,6] | 0.104 8 | |
高 | (6,8] | 0.393 1 | 最高 |
很高 | (8,10] | 0.043 8 |
表8 云相似度
Table 8 Cloud similarity
评语 | 区间 | 相似度 | 备注 |
---|---|---|---|
可忽略 | [0,2] | 0.001 0 | |
低 | (2,4] | 0.019 5 | |
中等 | (4,6] | 0.104 8 | |
高 | (6,8] | 0.393 1 | 最高 |
很高 | (8,10] | 0.043 8 |
[1] | 丹尼尔·阿瑞亚, 梅格·金, 李欣来. 人工智能对军事防御与安全的影响[J]. 信息安全与通信保密, 2022(6): 67-73. |
ARAYA D, KING M, LI Xinlai. The Impact of Artificial Intelligence on Military Defence and Security[J]. Information Security and Communications Privacy, 2022(6): 67-73. | |
[2] | SZABADFÖLDI I. Artificial Intelligence in Military Application-Opportunities and Challenges[J]. Land Forces Academy Review, 2021, 26(2): 157-165. |
[3] | MADIEGA T. EU Legislation in Progress: Artificial Intelligence Act[J/OL]. Members' Research Service, 2024:1-12.(2024-07-12)[2024-07-14].. |
[4] | JOHNSON J. Artificial Intelligence, Drone Swarming and Escalation Risks in Future Warfare[J]. The RUSI Journal, 2020, 165(2): 26-36. |
[5] | 赵擎天, 李立伟, 陈鑫, 等. 人工智能防御技术研究与启示[J]. 现代防御技术, 2024, 52(3): 55-63. |
ZHAO Qingtian, LI Liwei, CHEN Xin, et al. Research and Enlightenment of Artificial Intelligence Defense Technology[J]. Modern Defence Technology, 2024, 52(3): 55-63. | |
[6] | PRASAD SINGH H. Artificial Intelligence Affecting Strategic Stability[J]. International Journal of Advanced Research, 2022, 10(3): 1-4. |
[7] | 何绍溟, 王江, 宋韬, 等. 人工智能技术在武器中的应用综述[J]. 飞航导弹, 2021(7): 41-48. |
HE Shaoming, WANG Jiang, SONG Tao, et al. A Review of the Application of Artificial Intelligence Technology in Weapons[J]. Aerodynamic Missile Journal, 2021(7): 41-48. | |
[8] | 张梦钰, 豆亚杰, 陈子夷, 等. 深度强化学习及其在军事领域中的应用综述[J]. 系统工程与电子技术, 2024, 46(4): 1297-1308. |
ZHANG Mengyu, DOU Yajie, CHEN Ziyi, et al. Review of Deep Reinforcement Learning and Its Applications in Military Field[J]. Systems Engineering and Electronics, 2024, 46(4): 1297-1308. | |
[9] | 李鹤, 张平宇, 程叶青. 脆弱性的概念及其评价方法[J]. 地理科学进展, 2008, 27(2): 18-25. |
LI He, ZHANG Pingyu, CHENG Yeqing. Concepts and Assessment Methods of Vulnerability[J]. Progress in Geography, 2008, 27(2): 18-25. | |
[10] | VULNERABILITY T P. Resilience and the Collapse of Society: A Review of Models and Possible Climatic Applications[M]. Toronto: Institute for Environmental Studies, University of Toronto,1981. |
[11] | SANTOS L B L, SOARES G G, GARG T, et al. Vulnerability Analysis in Complex Networks Under a Flood Risk Reduction Point of View[J]. Frontiers in Physics, 2023, 11: 1064122. |
[12] | ZUFIRIA P J, PASTOR-ESCUREDO D, MEDINA L U, et al. Mobility Profiles and Calendars for Food Security and Livelihoods Analysis[EB/OL]. (2019-04-17) [2023-12-17]. . |
[13] | SINGH D, SINHA R, SONGARA P, et al. Vulnerabilities and Attacks Targeting Social Networks and Industrial Control Systems[EB/OL]. (2014-03-22) [2023-12-17]. . |
[14] | REECE M, LANDER T E Jr, STOFFOLANO M, et al. Systemic Risk and Vulnerability Analysis of Multi-cloud Environments[EB/OL]. (2023-07-07) [2023-12-17]. . |
[15] | 张宏军, 韦正现, 鞠鸿彬, 等. 武器装备体系原理与工程方法[M]. 北京: 电子工业出版社, 2019: 275-277. |
ZHANG Hongjun, WEI Zhengxian, JU Hongbin, et al. Basic Principles and Engineering Methods of Weapon System of Systems[M]. Beijing: Publishing House of Electronics Industry, 2019: 275-277. | |
[16] | ABAIMOV S, MARTELLINI M. Artificial Intelligence in Autonomous Weapon Systems[M]∥MARTELLINI M, TRAPP R. 21st Century Prometheus: Managing CBRN Safety and Security Affected by Cutting-Edge Technologies. Cham: Springer International Publishing, 2020: 141-177. |
[17] | BERGHOFF C, NEU M, VON TWICKEL A. Vulnerabilities of Connectionist AI Applications: Evaluation and Defense[J]. Frontiers in Big Data, 2020, 3: 23. |
[18] | HONG Yili, LIAN Jiayi, XU Li, et al. Statistical Perspectives on Reliability of Artificial Intelligence Systems[J]. Quality Engineering, 2023, 35(1): 56-78. |
[19] | 马壮林, 邵逸恒, 舒兰, 等. 多层网络视角下地铁网络脆弱性分析[J]. 中国安全科学学报, 2023, 33(8): 164-172. |
MA Zhuanglin, SHAO Yiheng, SHU Lan, et al. Vulnerability Analysis of Metro Network from Perspective of Multi-layer Network[J]. China Safety Science Journal, 2023, 33(8): 164-172. | |
[20] | 宋海彬, 武富庆, 于翠芳. 复杂地质生态环境脆弱性评估方法研究[J]. 能源与环保, 2022, 44(6): 17-23. |
SONG Haibin, WU Fuqing, YU Cuifang. Study on Vulnerability Assessment Method of Complex Geological Ecological Environment[J]. China Energy and Environmental Protection, 2022, 44(6): 17-23. | |
[21] | 张璨, 张明英. 人工智能深度学习算法可靠性评估方法研究[J]. 信息技术与标准化, 2018(8): 38-42. |
ZHANG Can, ZHANG Mingying. Research on the Reliability Assessment Method of Artificial Intelligence Deep Learning Algorithms[J]. Information Technology & Standardization, 2018(8): 38-42. | |
[22] | 孔祥维, 唐鑫泽, 王子明. 人工智能决策可解释性的研究综述[J]. 系统工程理论与实践, 2021, 41(2): 524-536. |
KONG Xiangwei, TANG Xinze, WANG ZI Ming. A Survey of Explainable Artificial Intelligence Decision[J]. Systems Engineering-Theory & Practice, 2021, 41(2): 524-536. | |
[23] | LIU Qiang, LI Pan, ZHAO Wentao, et al. A Survey on Security Threats and Defensive Techniques of Machine Learning: A Data Driven View[J]. IEEE Access, 2018, 6: 12103-12117. |
[24] | RASTOGI A, NYGARD K E. Trust and Security in Intelligent Autonomous Systems[J]. International Journal of Computers and Their Applications, 2019, 26(1): 22-29. |
[25] | 刘晗, 李凯旋, 陈仪香. 人工智能系统可信性度量评估研究综述[J]. 软件学报, 2023, 34(8): 3774-3792. |
LIU Han, LI Kaixuan, CHEN Yixiang. Survey on Trustworthiness Measurement for Artificial Intelligence Systems[J]. Journal of Software, 2023, 34(8): 3774-3792. | |
[26] | JENIHHIN M, REORDA M S, BALAKRISHNAN A, et al. Challenges of Reliability Assessment and Enhancement in Autonomous Systems[C]∥2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). Piscataway: IEEE, 2019: 1-6. |
[27] | DRESP-LANGLEY B. The Weaponization of Artificial Intelligence: What the Public Needs to Be Aware of[J]. Frontiers in Artificial Intelligence, 2023, 6: 1154184. |
[28] | AHMAD H, DHARMADASA I, ULLAH F, et al. A Review on C3I Systems’ Security: Vulnerabilities, Attacks, and Countermeasures[J]. ACM Computing Surveys, 2023, 55(9): 192. |
[29] | 韩双连, 陈振东, 陈子昂, 等. 基于群体决策与AHP算法的预警系统效能评估[J]. 现代雷达, 2022, 44(3): 58-62. |
HAN Shuanglian, CHEN Zhendong, CHEN Ziang, et al. Early Warning System Efficiency Evaluation Based on Group Decision and AHP[J]. Modern Radar, 2022, 44(3): 58-62. | |
[30] | 刘朱紫, 刘阳阳, 谢荣荣, 等. 基于熵值法的事故再现异常结果识别与融合[J]. 中国安全科学学报, 2023, 33(6): 96-104. |
LIU Zhuzi, LIU Yangyang, XIE Rongrong, et al. Identification and Fusion of Abnormal Results in Accident Reconstruction Based on Entropy Method[J]. China Safety Science Journal, 2023, 33(6): 96-104. | |
[31] | 姜东民, 张哲, 何栋良, 等. 承灾体视角下的装配式建筑脆弱性评估研究[J]. 中州大学学报, 2021, 38(2): 117-122. |
JIANG Dongmin, ZHANG Zhe, HE Dongliang, et al. Research on Vulnerability Assessment of Prefabricated Buildings from the Perspective of Hazard-Bearing Bodies[J]. Journal of Zhongzhou University, 2021, 38(2): 117-122. | |
[32] | 李琳琳, 路云飞, 张壮, 等. 基于云模型的指挥控制系统效能评估[J]. 系统工程与电子技术, 2018, 40(4): 815-822. |
LI Linlin, LU Yunfei, ZHANG Zhuang, et al. Effectiveness Evaluation of Command and Control System Based on Cloud Model[J]. Systems Engineering and Electronics, 2018, 40(4): 815-822. | |
[33] | 汪涛, 周文雅, 郭继唐, 等. 改进高斯云模型及其在装备保障体系能力评估中的应用[J]. 系统工程与电子技术, 2024, 46(5): 1673-1681. |
WANG Tao, ZHOU Wenya, GUO Jitang, et al. Improved Gaussian Cloud Model and Its Application in Equipment Support System Capability Evaluation[J]. Systems Engineering and Electronics, 2024, 46(5): 1673-1681. | |
[34] | 徐选华, 吴慧迪. 基于改进云模型的语言偏好信息多属性大群体决策方法[J]. 管理工程学报, 2018, 32(1): 117-125. |
XU Xuanhua, WU Huidi. Approach for Multi-attribute Large Group Decision-Making with Linguistic Preference Information Based on Improved Cloud Model[J]. Journal of Industrial Engineering and Engineering Management, 2018, 32(1): 117-125. | |
[35] | 廖列法, 黎晨, 孟祥茂. 基于欧氏空间相似度的云模型协同过滤算法[J]. 计算机工程与科学, 2015, 37(10): 1977-1982. |
LIAO Liefa, LI Chen, MENG Xiangmao. A Cloud Model Based Collaborative Filtering Recommendation Algorithm Using Euclidean Distance Similarity Measurement[J]. Computer Engineering & Science, 2015, 37(10): 1977-1982. |
[1] | 马艳艳, 林强, 李旭辉. 基于层次分析法的电磁环境复杂度计算与评估[J]. 现代防御技术, 2024, 52(6): 17-23. |
[2] | 曾拥华, 王海燕, 武婷婷, 王小龙, 姜柏存, 梁恒源. 基于云模型的分队级战场抢修能力评估[J]. 现代防御技术, 2024, 52(5): 116-126. |
[3] | 王宇江, 狄鹏, 侯丙旭, 梁俊鹏, 赵耀, 陈俊源. 基于FAHP-CM的舰船电力系统韧性评价研究[J]. 现代防御技术, 2024, 52(5): 138-146. |
[4] | 陈佳君, 胡冰, 施端阳, 杨丽佳. 基于改进TOPSIS-RSR的雷达装备测试性评估方法[J]. 现代防御技术, 2024, 52(5): 162-172. |
[5] | 岳江锋, 谢京华. 反无人机作战方案评估方法研究[J]. 现代防御技术, 2024, 52(5): 9-16. |
[6] | 鲍俊臣, 韩道文, 程立, 王双宇, 宋振之. 基于层次分析法的穿透性制空作战飞机威胁评估[J]. 现代防御技术, 2024, 52(1): 8-15. |
[7] | 李喆, 童逸琦, 夏文博, 应宇欣. 一种多源集中式空中目标类型综合识别方法[J]. 现代防御技术, 2023, 51(4): 53-62. |
[8] | 于勇政, 邵学辉, 高仕博, 蒲治伟, 薛冰. 多平台协同跟踪最优构型设计[J]. 现代防御技术, 2023, 51(3): 107-119. |
[9] | 杨鑫, 许卫东, 刘朝畅, 贾其, 郝有斌. 基于AHP和集对分析的自适应伪装系统综合评级[J]. 现代防御技术, 2023, 51(2): 109-118. |
[10] | 李迎博, 谭黎立, 王凯旋, 梁卓, 潘彦鹏. 一种基于构件重要度的软件可靠性评估方法[J]. 现代防御技术, 2022, 50(6): 103-109. |
[11] | 翟芸, 胡冰, 施端阳. 基于改进AHP-熵权法的雷达装备可靠性评估指标赋权方法[J]. 现代防御技术, 2022, 50(4): 148-155. |
[12] | 李威, 卢盈齐. 基于聚类组合赋权的空袭目标威胁评估方法[J]. 现代防御技术, 2022, 50(3): 17-24. |
[13] | 吕宝, 刘钊, 魏小根. 基于人为因素的航空装备系统效能评估技术[J]. 现代防御技术, 2021, 49(6): 98-105. |
[14] | 张馨予, 胡冰, 张逸楠, 边志芸. 基于改进Grey-AHP的雷达装备维修性评估方法[J]. 现代防御技术, 2021, 49(5): 78-87. |
[15] | 刘保军, 李成, 卿华, 李闯, 雍霄驹. 基于不确定性量化的装备抢修效能云模型评估[J]. 现代防御技术, 2021, 49(5): 65-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||