Modern Defense Technology ›› 2022, Vol. 50 ›› Issue (5): 93-105.DOI: 10.3969/j.issn.1009-086x.2022.05.013
• TARGET CHARACTERISTIC, DETECTION AND TRACKING TECHNOLOGY • Previous Articles Next Articles
Fang-yu ZHOU, Jie ZHOU, Chao-bo CHEN, Song GAO
Received:
2022-03-30
Revised:
2022-05-11
Online:
2022-10-28
Published:
2022-11-03
作者简介:
周方宇(1998-),男,陕西扶风人。硕士生,研究方向为无人机集群分布式控制,协同围捕等。
基金资助:
CLC Number:
Fang-yu ZHOU, Jie ZHOU, Chao-bo CHEN, Song GAO. Cooperative Detection and Tracking of UAV Swarms Based on Clonal Immune Decision-Making[J]. Modern Defense Technology, 2022, 50(5): 93-105.
周方宇, 周洁, 陈超波, 高嵩. 基于克隆免疫决策的无人机集群协同探测跟踪[J]. 现代防御技术, 2022, 50(5): 93-105.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xdfyjs.cn/EN/10.3969/j.issn.1009-086x.2022.05.013
类别 | 个体编号 | 策略池 |
---|---|---|
未探测和接收到目标信息 | 个体1 | |
个体3 | ||
个体7 | ||
个体9 | ||
探测到目标信息 | 个体4 | |
个体5 | ||
个体6 | ||
个体8 | ||
个体10 | ||
接收到通信范围内其他个体探测到目标的信息 | 个体2 |
Table 1 Figure 1 individual policy pool policy situation
类别 | 个体编号 | 策略池 |
---|---|---|
未探测和接收到目标信息 | 个体1 | |
个体3 | ||
个体7 | ||
个体9 | ||
探测到目标信息 | 个体4 | |
个体5 | ||
个体6 | ||
个体8 | ||
个体10 | ||
接收到通信范围内其他个体探测到目标的信息 | 个体2 |
无人机集群作战系统 | 传染免疫系统 |
---|---|
目标(敌方无人机) | 0号感染者 |
个体(我方无人机) | 未感染个体 |
个体 | 个体 |
个体 | 个体 |
个体 | 个体 |
个体 | 个体 |
Table 2 Analogy relationship between UCCS and IIS
无人机集群作战系统 | 传染免疫系统 |
---|---|
目标(敌方无人机) | 0号感染者 |
个体(我方无人机) | 未感染个体 |
个体 | 个体 |
个体 | 个体 |
个体 | 个体 |
个体 | 个体 |
无人机集群作战系统 | 免疫系统 |
---|---|
目标 | 抗原 |
个体 | B细胞容器(含有多个B细胞) |
策略 | 抗体 |
策略增强 | 抗体刺激 |
策略减弱 | 抗体抑制 |
Table 3 Analogy relationship between UCCS and IS
无人机集群作战系统 | 免疫系统 |
---|---|
目标 | 抗原 |
个体 | B细胞容器(含有多个B细胞) |
策略 | 抗体 |
策略增强 | 抗体刺激 |
策略减弱 | 抗体抑制 |
描述 | 符号 | 值 |
---|---|---|
0号感染者出现在个体探测半径内时个体的直接感染概率 | Pd | 0.95 |
个体由于某种未知因素直接感染概率 | Pf | 0.05 |
直接感染病毒量 | Kd | 20 |
最小病毒量 | Smin | 2 |
最大病毒量(感染病毒阈值) | Smax | 20 |
当个体自身所含病毒量大于病毒阈值时,个体交叉感染概率 | Pc | 1 |
当个体自身所含病毒量处于最小病毒量和病毒阈值之间时,个体交叉感染概率 | Pe | 0 |
交叉感染程度因子随时间单调递增时,交叉感染系数 | c1 | 9 |
交叉感染程度因子随时间不单调变化时,交叉感染系数 | c2 | 4.5 |
交叉感染程度因子随时间单调递减时,交叉感染系数 | c3 | 0 |
病毒量衰减系数 | Kv | 0.6 |
个体之间相互刺激系数 | Msti | 10 |
个体之间相互抑制系数 | Minh | 10 |
个体与目标之间的相互影响系数 | Maff | 20 |
策略强度衰减系数 | l | 0.3 |
Table 4 CS-II AIS parameter settings
描述 | 符号 | 值 |
---|---|---|
0号感染者出现在个体探测半径内时个体的直接感染概率 | Pd | 0.95 |
个体由于某种未知因素直接感染概率 | Pf | 0.05 |
直接感染病毒量 | Kd | 20 |
最小病毒量 | Smin | 2 |
最大病毒量(感染病毒阈值) | Smax | 20 |
当个体自身所含病毒量大于病毒阈值时,个体交叉感染概率 | Pc | 1 |
当个体自身所含病毒量处于最小病毒量和病毒阈值之间时,个体交叉感染概率 | Pe | 0 |
交叉感染程度因子随时间单调递增时,交叉感染系数 | c1 | 9 |
交叉感染程度因子随时间不单调变化时,交叉感染系数 | c2 | 4.5 |
交叉感染程度因子随时间单调递减时,交叉感染系数 | c3 | 0 |
病毒量衰减系数 | Kv | 0.6 |
个体之间相互刺激系数 | Msti | 10 |
个体之间相互抑制系数 | Minh | 10 |
个体与目标之间的相互影响系数 | Maff | 20 |
策略强度衰减系数 | l | 0.3 |
1 | 韩亮, 任章, 董希旺, 等. 多无人机协同控制方法及应用研究[J]. 导航定位与授时, 2018, 5(4): 1-7. |
HAN Liang, REN Zhang, DONG Xi-wang, et al. Research on Cooperative Control Method and Application of Multi-UAV[J]. Navigation Positioning and Timing, 2018, 5(4): 1-7. | |
2 | 范彬, 杨书奎. 小型无人机集群作战的关键技术分析[J]. 无线互联科技, 2019, 16(17): 132-133,138. |
FAN Bin, YANG Shu-kui. Analysis of Key Technologies in Cluster Operations of Small UAV [J]. Wireless Internet Technology, 2019, 16(17): 132-133,138. | |
3 | 牛轶峰, 肖湘江, 柯冠岩. 无人机集群作战概念及关键技术分析[J]. 国防科技, 2013, 34(5): 37-43. |
NIU Yi-feng, XIAO Xiang-jiang, KE Guan-yan. Analysis of the Concept and Key Technology of UAV Group Operation[J]. National Defense Technology, 2013, 34(5): 37-43. | |
4 | 周宣吉, 王薇, 王磊, 等. 基于分布式人工势场算法的无人机集群系统机间规避控制[J]. 科技与创新, 2018, 120(24): 25-27. |
ZHOU Xuan-ji, WANG Wei, WANG Lei, et al. Inter-machine Evasion Control of UAV Cluster System Based on Distributed Artificial Potential Field Algorithm[J]. Science and Technology & Innovation, 2018, 120(24): 25-27. | |
5 | MAHMOOD A, KIM Y. Leader-following Formation Control of Quadcopters with Heading Synchronization[J]. Aerospace Science & Technology, 2015, 47: 68-74. |
6 | DEHGHANI M A, MENHAJ M B. Communication Free Leader-follower Formation Control of Unmanned Aircraft Systems[J]. Robotics & Autonomous Systems, 2016, 80: 69-75. |
7 | JIA Y, LI Q, QIU S. Distributed Leader-follower Flight Control for Large-scale Clusters of Small Unmanned Aerial Vehicles[J]. IEEE Access, 2018, 6: 32790-32799. |
8 | ASKARI A, MORTAZAVI M, TALEBI H A. UAV Formation Control Via the Virtual Structure Approach[J]. Journal of Aerospace Engineering, 2015, 28(1): 04014047. |
9 | 邵壮, 祝小平, 周洲, 等. 三维动态环境下多无人机编队分布式保持控制[J]. 控制与决策, 2016, 31(6): 1065-1072. |
SHAO Zhuang, ZHU Xiao-ping, ZHOU Zhou, et al. Distributed Maintenance Control of Multi-UAV Formation in Three-dimensional Dynamic Environment[J]. Control and Decision, 2016, 31(6): 1065-1072. | |
10 | 朱旭, 闫茂德, 张昌利, 等. 基于改进人工势场的无人机编队防碰撞控制方法[J]. 哈尔滨工程大学学报, 2017, 38(6): 961-968. |
ZHU Xu, YAN Mao-de, ZHANG Chang-li, et al. Anti-Collision Control Method of UAV Formation Based on Improved Artificial Potential Field[J]. Journal of Harbin Engineering University, 2017, 38(6): 961-968. | |
11 | 曲成刚, 曹喜滨, 张泽旭. 人工势场和虚拟领航者结合的多智能体编队[J]. 哈尔滨工业大学学报, 2014, 46(5): 1-5. |
QU Cheng-gang, CAO Xi-bin, ZHANG Ze-xu. Multi-agent Formation Combining Artificial Potential Field and Virtual Navigator[J]. Journal of Harbin Institute of Technology, 2014, 46(5): 1-5. | |
12 | 张岱峰,段海滨,范彦铭. 仿狼群狩猎空间交互机制的无人机集群合围控制[J/OL].中国科学:技术科学,2021:1-16(2021-08-02)[2022-03-02].. |
ZHANG Dai-feng, DUAN Hai-bin, FAN Yan-ming. UAV Swarm Encirclement Control Based on the Interaction Mechanism of Wolf Pack Hunting Space[J/OL]. Scientia Sinica (Technologica), 2021:1-16.(2021-08-02)[2022-03-02].. | |
13 | 周贞文, 邵将, 徐扬, 等.针对逃逸目标的多机协同围捕策略研究[J]. 空军工程大学学报(自然科学版), 2021, 22(3): 2-8. |
ZHOU Zhen-wen, SHAO Jiang, XU Yang, et al. Research on Multi-aircraft Cooperative Hunting Strategy Aimed at Escape Targets[J]. Journal of Air Force Engineering University(Natural Science Edition), 2021, 22(3): 2-8. | |
14 | 霍梦真, 段海滨. 基于自适应变异的多目标鸽群优化的无人机目标搜索[J]. 控制理论与应用, 2020, 37(3): 584-591. |
HUO Meng-zhen, DUAN Hai-bin. UAV Target Search Based on Adaptive Mutation-based Multi-target Pigeon Flock Optimization[J]. Control Theory & Applications, 2020, 37(3): 584-591. | |
15 | ZHOU J, LIANG Y, SHEN Q, et al. A Novel Energy-Efficient Multi-Sensor Fusion Wake-up Control Strategy Based on a Biomimetic Infectious-Immune Mechanism for Target Tracking[J]. Sensors, 2018, 18(4): 1255. |
16 | 颜宝苹, 周洁, 申强, 等. 基于传染-免疫机制的无人机集群协同探测与跟踪[J]. 中国测试, 2021, 47(1): 88-95. |
YAN Bao-ping, ZHOU Jie, SHEN Qiang, et al. Coo-perative Detection and Tracking of UAV Clusters based on Infection-Immune Mechanism[J]. China Measurement & Test, 2021, 47(1): 88-95. | |
17 | WENG L G, LIU Q S, XIA M, et al. Immune Network-based Swarm Intelligence and Its Application to Unmanned Aerial Vehicle (UAV) Swarm Coordination[J]. Neurocomputing, 2014, 125: 134-141. |
18 | Stogiannos Marios, Alexandridis Alex, Sarimveis Haralambos. An Enhanced Decentralized Artificial Immune-based Strategy Formulation Algorithm for Swarms of Autonomous Vehicles[J]. Applied Soft Computing Journal, 2020, 89: 106-135. |
19 | FARMER J D, KAUFFMAN S A, PACKARD N H,et al. Adaptive Dynamic Networks as Models for the Immune System and Autocatalytic Sets[J]. Annals of the New York Academy of Sciences, 1987, 504(1): 118-131. |
20 | FARMER J D, PACKARD N H, PERELSON A S. The Immune System, Adaptation, and Machine Learning[J]. Physica D: Nonlinear Phenomena, 1986, 22(1-3): 187-204. |
[1] | Yongzheng YU, Xuehui SHAO, Shibo GAO, Zhiwei PU, Bing XUE. Optimal Configuration Design for Multi-platform Collaborative Target Tracking [J]. Modern Defense Technology, 2023, 51(3): 107-119. |
[2] | Ming HE, Zihan ZHU, Xulong ZHAI, Zheng ZHAI, Chengpeng HAO. Air-to-Ground Target Detection Algorithm Based on Multi-branch Context Fusion [J]. Modern Defense Technology, 2023, 51(3): 91-98. |
[3] | Xue-zhen JIA, Wu SUN, Qiu-feng XU, Rui-rong CHEN. Range Walk Analysis and Compensation Algorithm of Interrupted Continuous Wave Dechirp System [J]. Modern Defense Technology, 2022, 50(6): 83-89. |
[4] | Yan DAI, Dan LIU, Qing-rong HU, Cheng-zeng CHEN, Yue-xun WANG. Phase Compensation Accumulation Method Based for Radar Echo Splitting [J]. Modern Defense Technology, 2022, 50(3): 84-89. |
[5] | Hai-han LIU, LU¨ Wei-xiang. A Phase Coherent Accumulation Algorithm of Moving Target Based on Time Reversal Transformation [J]. Modern Defense Technology, 2022, 50(2): 67-75. |
[6] | Ke LIU, Guang-yu PAN, Da-guo ZHENG, Jiao-jiao GU, Chun-ying MENG. An Aerial Forensic Target Detection Algorithm Based on RetinaNet and SE Fusion [J]. Modern Defense Technology, 2022, 50(1): 25-32. |
[7] | AN Lei, LI Zhao-rui, JI Bing. Sensor Scheduling Method under Radiation Risk and Multitarget Tracking Accuracy Constraints [J]. Modern Defense Technology, 2021, 49(6): 56-67. |
[8] | LI Xiao-fei, TANG Yi-dong. Spectral Images Compressive Sampling Detection Based on Prior Sparse Model [J]. Modern Defense Technology, 2021, 49(3): 115-122. |
[9] | WANG Wen-qing, PANG Ying, LIU Yang, YANG Dong-fang, ZHANG Meng. Air-to-Ground Target Intelligent Detection Algorithm Based on Dual Attention Mechanism [J]. Modern Defense Technology, 2020, 48(6): 81-88. |
[10] | WANG Zhi-hu, SHEN Xiao-qing, GUI Wei-long. Survey of Small Targets Detection Technology in Optical Imaging [J]. Modern Defense Technology, 2020, 48(5): 67-73. |
[11] | CHEN Rui-rong, SUN Wu, JIA Xue-zhen, XU Qiu-feng. Space Taget Detection Method Based on Second-Order Keystone Transform [J]. Modern Defense Technology, 2020, 48(4): 93-101. |
[12] | ZHAO Kai-li, GAO Huo-tao, CAO Ting. IMMCPF Algorithm for Tracking of Hypersonic Target in Near Space [J]. Modern Defense Technology, 2018, 46(5): 94-101. |
[13] | KANG Hong-xia, HUANG Shu-cai, HUANG Wen-long, WU Jian-feng. Detection Algorithm for Small and Weak Target Based on LSSVM Combining Spectral Dimension Information [J]. Modern Defense Technology, 2018, 46(4): 86-91. |
[14] | WANG Wan-tian, YUAN Jun-quan, WANG Li-bao, CHEN A-lei. Maneuvering Targets Detection Algorithm Based on MDCFT in Space-Air Based Bistatic Radar [J]. Modern Defense Technology, 2018, 46(3): 191-198. |
[15] | WANG Tian-yun, LIU Bing, LING Xiao-dong, LIU Yong, CHEN Wei-dong. Performance Analysis of Passive Radar Using Digital Video Broadcasting-Satellite Signal [J]. Modern Defense Technology, 2018, 46(3): 120-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||