1 |
SILVER D, HUANG A, MADDISON C J, et al. Mastering the Game of Go with Deep Neural Networks and Tree Search[J]. Nature, 2016, 529(7587): 484-489.
|
2 |
SHASTRI B J, TAIT A N, DE LIMA T F, et al. Photonics for Artificial Intelligence and Neuromorphic Computing[J]. Nature Photonics, 2021, 15(2): 102-114.
|
3 |
JUNG J, MAEDA M, CHANG A, et al. The Potential of Remote Sensing and Artificial Intelligence as Tools to Improve the Resilience of Agriculture Production Systems[J]. Current Opinion in Biotechnology, 2021(70): 15-22.
|
4 |
KAZIMIERSKI W, STATECZNY A. Radar and Automatic Identification System Track Fusion in an Electronic Chart Display and Information System[J]. The Journal of Navigation, 2015, 68(6): 1141-1154.
|
5 |
本书编写组. 现代舰艇火控系统[M]. 北京:国防工业出版社, 2008.
|
|
The Book Writing Group. Modern Naval Fire Control System [M]. Beijing: National Defense Industry Press, 2008.
|
6 |
GALKIN D V, KOLYANDRA P A, STEPANOV A V. Application Status and Prospect of AI in Military Field[J]. Military Thought, 2021 (1): 113-124.
|
7 |
KIM H, JUNG W K, PARK Y C, et al. Broken Stitch Detection Method for Sewing Operation Using CNN Feature Map and Image-Processing Techniques[J]. Expert Systems with Applications, 2022, 188: 116014.
|
8 |
BRAHIM N K, ABDULLAH R, SARIPAN M I. Artificial Neural Network Approach in Radar Target Classification[J]. Journal of Computer Science, 2009, 5(1): 23-32.
|
9 |
SINGH U K, PADMANABHAN V, AGARWAL A. Dynamic Classification of Ballistic Missiles Using Neural Networks and Hidden Markov Models[J]. Applied Soft Computing, 2014(19): 280-289.
|
10 |
ZHU P, ISAACS J, FU B, et al. Deep Learning Feature Extraction for Target Recognition and Classification in Underwater Sonar Images[C]∥2017 IEEE 56th Annual Conference on Decision and Control (CDC),Melbourne, Australia, IEEE, 2017: 2724-2731.
|
11 |
KARINE A, TOUMI A, KHENCHAF A, et al. Multivariate Copula Statistical Model and Weighted Sparse Classification for Radar Image Target Recognition[J]. Computers & Electrical Engineering, 2020(84): 106633.
|
12 |
MALLESWARAN M, VAIDEHI V, IRWIN S, et al. IMM-UKF-TFS Model-Based Approach for Intelligent Navigation[J]. The Journal of Navigation, 2013, 66(6): 859.
|
13 |
STATECZNY A, KAZIMIERSKI W. A Comparison of the Target Tracking in Marine Navigational Radars by Means of GRNN Filter and Numerical Filter[C]∥2008 IEEE Radar Conference. Rome, Italy, IEEE, 2008: 1-4.
|
14 |
KAZIMIERSKI W, STATECZNY A. Optimization of Multiple Model Neural Tracking Filter for Marine Targets[C]∥2012 13th International Radar Symposium. IEEE, 2012: 543-548.
|
15 |
JONDHALE S R, DESHPANDE R S. Kalman Filtering Framework-Based Real Time Target Tracking in Wireless Sensor Networks Using Generalized Regression Neural Networks[J]. IEEE Sensors Journal, 2018, 19(1): 224-233.
|
16 |
KAZIMIERSKI W. Proposal of Neural Approach to Maritime Radar and Automatic Identification System Tracks Association[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 729-735.
|
17 |
DASH D, JAYARAMAN V. A Probabilistic Model for Sensor Fusion Using Range-Only Measurements in Multistatic Radar[J]. IEEE Sensors Letters, 2020, 4(6): 1-4.
|
18 |
WITTMAN JR R L. Defining a Standard: the Military Scenario Definition Language Version 1.0 Standard[C]∥Proceedings of the 2009 Spring Simulation Multiconference. San Diego California,2009: 1-5.
|
19 |
WITTMAN R. OneSAF as an In-Stride Mission Command asset[R]. Orlando Florida, Mitre Corp Orlando Fl, 2014.
|
20 |
BLAIS C, ABBOTT J. Integrating the Coalition Battle Management Language (C-BML) into the Military Scenario Definition Language (MSDL)[C]∥Proceedings of the Spring Simulation Interoperability Workshop, Simulation Interoperability Standards Organization, Orlando, FL, April 2010.
|
21 |
PULLEN M, CORNER D, SINGAPOGU S, et al. Command and Control System to Simulation System Interoperation: Development of the C2SIM Standard [C]∥Winter Simulation Innovation Workshop, Orlando, FL, 2019: 1-14.
|
22 |
BLENOCK B M. AI in Future Military Confrontation[J]. Military Thought, 2021(4): 106-112.
|
23 |
JOHANSSON F, FALKMAN G. A Bayesian Network Approach to Threat Evaluation with Application to an Air Defense Scenario[C]∥2008 11th International Conference on Information Fusion. IEEE, 2008: 1-7.
|
24 |
AZIMIRAD E, HADDADNIA J. Target Threat Assessment using Fuzzy Sets Theory[J]. International Journal of Advances in Intelligent Informatics, 2015, 1(2): 57-74.
|
25 |
RASSALNA P, MISHRA T. Target Detection, Tracking and Threat Evaluation in Multi Sensor System Using Machine Learning[C]∥2020 3rd International Conference on Intelligent Sustainable Systems (ICISS),Coimbatore, India, IEEE, 2020: 837-842.
|
26 |
JULSTROM B A. String-and Permutation-Coded Genetic Algorithms for the Static Weapon-Target Assignment Problem[C]∥Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers. 2009: 2553-2558.
|
27 |
JOHANSSON F, FALKMAN G. Real-Time Allocation of Defensive Resources to Rockets, Artillery, and Mortars[C]∥2010 13th International Conference on Information Fusion. IEEE, 2010: 1-8.
|
28 |
KLINE A, AHNER D, PACHTER M. A Greedy Hungarian Algorithm for the Weapon-Target Assignment Problem[R]∥Technical Report COA-02-17. Air Force Institute of Technology Center for Operational Analysis, 2017.
|
29 |
HARLIN W J, CICCI D A. Ballistic Missile Trajectory Prediction Using a State Transition Matrix[J]. Applied Mathematics and Computation, 2007, 188(2): 1832-1847.
|
30 |
FARINA A, TIMMONERI L, VIGILANTE D. Classification and Launch-Impact Point Prediction of Ballistic Target via Multiple Model Maximum Likelihood Estimator (MM-MLE)[C]∥2006 IEEE Conference on Radar. IEEE, 2006.
|
31 |
MAHMOOD Y A, AHMADI A, VERMA A K, et al. Fuzzy Fault Tree Analysis: A Review of Concept and Application[J]. International Journal of System Assurance Engineering & Management, 2013, 4(1):19-32.
|