Modern Defense Technology ›› 2024, Vol. 52 ›› Issue (2): 33-41.DOI: 10.3969/j.issn.1009-086x.2024.02.004

• AIRCRAFT TECHNOLOGY • Previous Articles     Next Articles

Active Disturbance Rejection Control for Transpiration Cooling System of Hypersonic Vehicles

Xin YI1(), Chunyan WANG1,2, Wei DONG3(), Pengyu ZHANG4, Xiaojian LI5, Jianan WANG1, Fang DENG3,6   

  1. 1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
    2.Advanced Technology Research Institute, Beijing Institute of Technology, Ji’nan 250300, China
    3.National Key Lab of Autonomous Intelligent Unmanned Systems, Beijing Institute of Technology, Beijing 100081, China
    4.Beijing Institute of Nearspace Vehicle's Systems Engineering, Beijing 100076, China
    5.Wuhan Guide Infrared Co. , Ltd. , Wuhan 430205, China
    6.Be?ing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
  • Received:2023-12-28 Revised:2024-01-21 Online:2024-04-28 Published:2024-04-29
  • Contact: Wei DONG

高超声速飞行器发汗冷却系统自抗扰控制研究

易鑫1(), 王春彦1,2, 董伟3(), 张鹏宇4, 黎晓健5, 王佳楠1, 邓方3,6   

  1. 1.北京理工大学 宇航学院, 北京 100081
    2.北京理工大学 前沿技术研究院, 山东 济南 250300
    3.北京理工大学 自主智能无人系统全国重点实验室, 北京 100081
    4.北京临近空间飞行器系统工程研究所, 北京 100076
    5.武汉高德红外股份有限公司, 湖北 武汉 430205
    6.北京理工大学 重庆创新中心, 重庆 401120
  • 通讯作者: 董伟
  • 作者简介:易鑫(1997-),男,河南邓州人。博士生,研究方向为飞行器制导与控制。E-mail:yix@bit.edu.cn
  • 基金资助:
    国家杰出青年科学基金(62025301);国家自然科学基金面上项目(62273043);博士后创新人才支持计划(BX20230461);博士后科学基金面上资助(2023M740249);山东省重点研发计划(重大科技创新工程)(2020CXGC011502)

Abstract:

Aiming at the temperature control problem of the hypersonic vehicle transpiration cooling system, this paper proposes an active disturbance rejection controller (ADRC) to adjust the temperature of the porous medium on the vehicle wall based on the one-dimensional fixed boundary sweating cooling model, whose effectiveness and advantages are verified by a numerical simulation. The controller does not rely on the precise mathematical model of the temperature field of the porous medium. The heat flow disturbance is suppressed by extracting and compensating disturbance information from the input and output data of the system. The simulation results show that the ADRC designed for the transpiration cooling system can quickly track the reference temperature. Compared with the traditional PID control, the temperature response under ADRC has no overshoot. In addition, when external heat flow interference occurs, the ADRC has strong robustness and adaptability, which can provide a certain reference for the engineering application of transpiration cooling control systems.

Key words: hypersonic vehicles, transpiration cooling, temperature control, active disturbance rejection control, robustness, anti disturbance

摘要:

针对高超声速飞行器发汗冷却系统的温度控制问题,在一维固定边界发汗冷却模型的基础上,提出了用于调节飞行器壁面多孔介质温度的自抗扰控制器,并进行了数值仿真。该控制器不依赖于多孔介质温度场精确的数学模型,通过从系统的输入输出数据中提取干扰信息并进行补偿,实现对热流干扰的抑制。仿真结果表明,针对发汗冷却系统设计的自抗扰控制器,能够实现对参考温度的快速跟踪;且相较于传统的PID控制,温度响应没有超调;在有外界热流干扰时,具有较强的鲁棒性和适应性,可以为发汗冷却控制系统的工程应用提供一定参考。

关键词: 高超声速飞行器, 发汗冷却, 温度控制, 自抗扰控制, 鲁棒性, 抗干扰

CLC Number: