Modern Defense Technology ›› 2024, Vol. 52 ›› Issue (6): 1-8.DOI: 10.3969/j.issn.1009-086x.2024.06.001

• Expert Manuscript •    

A New Relativistic Autonomous Celestial Navigation Method for Near Earth Spacecraft

Xianjun ZHAN, Xinlong WANG, Xiucong SUN   

  1. School of Astronautics,Beihang University,Beijing 100191,China
  • Received:2024-01-11 Revised:2024-01-26 Online:2024-12-28 Published:2024-12-26
  • Contact: Xinlong WANG

一种近地空间航天器相对论自主天文导航新方法

詹先军, 王新龙, 孙秀聪   

  1. 北京航空航天大学 宇航学院,北京 100191
  • 通讯作者: 王新龙
  • 作者简介:詹先军(1995-),男,福建三明人。博士生,研究方向为导航、制导与控制。
  • 基金资助:
    国家自然科学基金(61673040);航空科学基金(20170151002)

Abstract:

Relativistic navigation is a new high-precision autonomous celestial navigation method. This method obtains spacecraft’s position and velocity information by establishing two types of relativistic effects models, namely starlight gravitational deflection and stellar aberration. Therefore, the accuracy of models directly affects the accuracy of relativistic navigation. However, when establishing the current relation model between starlight gravitational deflection and spacecraft position, only the nearest celestial body is considered. The actual starlight gravitational deflection is not only related to the distance between the spacecraft and the celestial body, but also to factors such as the gravitational coefficient of the celestial body, and the angle between star and celestial body. Therefore, this article takes near Earth spacecraft as the object and considers the starlight gravitational deflection caused by multiple celestial bodies. Thereby, the relation model between starlight gravitational deflection and spacecraft’s position and the relation model between stellar aberration and spacecraft’s velocity are established. Using high-precision stellar angular distance information measured by optical interferometers, combined with orbit dynamics model and optimal estimation algorithm, the high-precision position and velocity of the spacecraft can be obtained. Finally, simulation shows that for geostationary orbit satellites, when the stellar angular distance measurement accuracy is 1 mas, the position and velocity errors of the proposed method are within 100 m and 0.01 m/s, respectively.

Key words: celestial navigation, relativistic effects, starlight gravitational deflection, stellar aberration, autonomous navigation, optical interferometer

摘要:

相对论导航是近年来提出的一种新型高精度自主天文导航方法,该方法通过建立星光引力偏折和恒星光行差这两类相对论效应与航天器位置、速度之间的关系模型,获得航天器的位置、速度信息。可见,关系模型的精确性直接影响相对论导航的精度。然而,目前在建立星光引力偏折与航天器位置的关系模型时,仅考虑离航天器最近天体引力的影响,而星光引力偏折不仅与航天器到天体的距离有关,还与天体引力系数、恒星-天体间的夹角等因素有关。为此,以近地空间航天器为对象,综合考虑多个天体引起的星光引力偏折,建立了星光引力偏折与航天器位置的关系模型,以及恒星光行差与航天器速度的关系模型,并利用光学干涉仪测得高精度恒星角距信息,结合轨道动力学模型和最优估计算法,得到航天器高精度位置和速度信息。最后,仿真验证表明,对于地球同步轨道卫星,恒星角距测量精度为1 mas时,所提方法的位置和速度误差小于100 m和0.01 m/s。

关键词: 天文导航, 相对论效应, 星光引力偏折, 恒星光行差, 自主导航, 光学干涉仪

CLC Number: