1 |
刘放, 张永久, 张强, 等. 战略导弹陆基多样式发射方式研究[J]. 飞航导弹, 2019(10): 61-65.
|
|
LIU Fang, ZHANG Yongjiu, ZHANG Qiang, et al. Research on Land-Based Multi-Style Launch Mode of Strategic Missile[J]. Aerodynamic Missile Journal, 2019(10): 61-65.
|
2 |
刘放, 王宇, 任军. 美国陆基洲际弹道导弹部署方案的研究[C]∥第八届中国指挥控制大会论文集. 北京: 兵器工业出版社, 2020: 73-78.
|
|
LIU Fang, WANG Yu, REN Jun. Study on the Deployment Schedule of the U.S. Intercontinental Ballistic Missile[C]∥The 8th China Conference on Command and Control. Beijing: Weapon Industry Press, 2020: 73-78.
|
3 |
代海峰, 毕义明, 张欧亚, 等. 美俄陆基核力量多元形态发展探析[J]. 飞航导弹, 2018(10): 46-50, 55.
|
|
DAI Haifeng, BI Yiming, ZHANG Ouya, et al. An Analysis of the Multiple Forms Development of U.S. and Russian Land-Based Nuclear Forces[J]. Aerodynamic Missile Journal, 2018(10): 46-50, 55.
|
4 |
封先河, 曹学军, 杨万均, 等. 环境作用动力学及其在武器装备定寿延寿中的应用[J]. 装备环境工程, 2014, 11(4): 26-31, 36.
|
|
FENG Xianhe, CAO Xuejun, YANG Wanjun, et al. Dynamics of Environmental Effect and Its Application in Determination and Extension of Weapon Service Life[J]. Equipment Environmental Engineering, 2014, 11(4): 26-31, 36.
|
5 |
SIEMON J T, 张志英, 张志敏. 耐蠕变弹性体支座的发展[J]. 橡胶译丛, 1987(6): 36-39.
|
|
SIEMON J T, ZHANG Zhiying, ZHANG Zhimin. Development of Creep Resistant Elastomeric Bearings[J]. Selected Translations on Rubber, 1987(6): 36-39.
|
6 |
封先河. 蠕变动力学模型及其在弹簧蠕变中的应用[J]. 科学通报, 2012, 57(25): 2354-2358.
|
|
FENG Xianhe. Creep Dynamic Model and Its Application in Creep of Spring[J]. Chinese Science Bulletin, 2012, 57(25): 2354-2358.
|
7 |
周晓和, 王惠方, 马大为, 等. 导弹无依托待发射阶段场坪准静态响应研究[J]. 弹道学报, 2015, 27(2): 91-96.
|
|
ZHOU Xiaohe, WANG Huifang, MA Dawei, et al. Study on Unsupported Launching Site Quasi-Static Response During Missile Standby Phase[J]. Journal of Ballistics, 2015, 27(2): 91-96.
|
8 |
王永帅, 董可海, 张波, 等. 舰载导弹发动机药柱蠕变损伤研究[J]. 兵工自动化, 2017, 36(6): 80-84, 89.
|
|
WANG Yongshuai, DONG Kehai, ZHANG Bo, et al. A Study on Creep Damage of a Shipborne Missile Motor Grain[J]. Ordnance Industry Automation, 2017, 36(6): 80-84, 89.
|
9 |
孙同生, 朱隽垚, 于存贵, 等. 多管火箭武器箱式复合材料定向器长期堆码贮存吸湿-蠕变耦合行为预测[J]. 兵工学报, 2021, 42(3): 487-498.
|
|
SUN Tongsheng, ZHU Juanyao, YU Cungui, et al. Prediction of Moisture Absorption-Creep Coupling Behavior of Box-Type Composite Directors for Multiple Launch Rocket System under Long-Term Stacking Storage[J]. Acta Armamentarii, 2021, 42(3): 487-498.
|
10 |
孙同生, 于存贵, 秦予铮, 等. 多管火箭武器储运发射箱长期储存蠕变性能预测[J]. 国防科技大学学报, 2020, 42(5): 60-67.
|
|
SUN Tongsheng, YU Cungui, QIN Yuzheng, et al. Prediction of Creep Performance for Multiple Launch Rocket Canister Under Long-Term Storage[J]. Journal of National University of Defense Technology, 2020, 42(5): 60-67.
|
11 |
HAN Hongguang, SHEN Junjie. A Composite Model for Residual Creep Life Assessment in T/P92 Heat-Resistant Steel[J]. International Journal of Pressure Vessels and Piping, 2021, 191: 104352.
|
12 |
江冯, 刘春慧, 程从前, 等. 采用不同方法预测10Cr9MoW2VNbBN钢蠕变曲线的比较[J]. 机械工程材料, 2015, 39(3): 89-93.
|
|
JIANG Feng, LIU Chunhui, CHENG Congqian, et al. A Comparison for Predicting Creep Curves of 10Cr9MoW2VNbBN Steel by Different Methods[J]. Materials for Mechanical Engineering, 2015, 39(3): 89-93.
|
13 |
刘贺. 典型金属管材弯曲滞后回弹的试验研究与有限元模拟[D]. 北京: 北京理工大学, 2016.
|
|
LIU He. Experimental Study and Numerical Simulation of Time-Dependent Spring-Back of Typical Metal Tubes under Rotary Bending[D]. Beijing: Beijing Institute of Technology, 2016.
|
14 |
刘云旭, 朱启惠, 李兴仁. 40CrNiMoA钢的常温蠕变规律及其影响因素[J]. 吉林工学院学报, 1992, 13(3): 1-7.
|
|
LIU Yunxu, ZHU Qihui, LI Xingren. The Ambient Temperature Creep Behaviour of 40CrNiMoA Steel and Its Influencing Factors[J]. Journal of Jilin Institute of Technology, 1992, 13(3): 1-7.
|
15 |
魏轩, 赵华. 硬质聚氨酯泡沫材料的常温蠕变特性[J]. 机械工程材料, 2015, 39(7): 104-107, 112.
|
|
WEI Xuan, ZHAO Hua. Creep Properties of Hard Polyurethane Foam at Room Temperature[J]. Materials for Mechanical Engineering, 2015, 39(7): 104-107, 112.
|
16 |
王蕊, 李永奎, 李东风, 等. P91耐热钢蠕变过程的细观力学性能模拟[J]. 塑性工程学报, 2022, 29(10): 223-229.
|
|
WANG Rui, LI Yongkui, LI Dongfeng, et al. Mesoscale Simulation of Mechanical Performance for P91 Heat Resistance Steel During Creep Process[J]. Journal of Plasticity Engineering, 2022, 29(10): 223-229.
|