Modern Defense Technology ›› 2025, Vol. 53 ›› Issue (3): 32-41.DOI: 10.3969/j.issn.1009-086x.2025.03.004

• AIR SPACE DEFENSE SYSTEM AND WEAPON • Previous Articles     Next Articles

A Method of HRRP Reconstruction and Recognition:SDAE-CNN with Label Constraints

Jianguo YIN1,2, Wen SHENG1, Meng ZHAO2, He JIANG3   

  1. 1.Air Force Early Warning Academy,Wuhan 430019,China
    2.PLA 95866 Troops
    3.PLA 93110 Troops
  • Received:2024-02-29 Revised:2024-07-15 Online:2025-06-28 Published:2025-07-01

一种HRRP重构识别方法:带标签约束的SDAE-CNN

尹建国1,2, 盛文1, 赵蒙2, 江河3   

  1. 1.空军预警学院,湖北 武汉 430019
    2.中国人民解放军95866部队
    3.中国人民解放军93110部队
  • 作者简介:尹建国(1990-),男,土家族,湖北建始人。讲师,博士,研究方向为雷达目标识别,深度学习。

Abstract:

The high resolution range profile (HRRP) of radar airborne targets is commonly used for target recognition. In practical operation, incomplete data samples and noise interference can present challenges to radar target recognition. To overcome this challenge, this paper combines stacked denoising auto-encoders (SDAE) with label constraints and convolutional neural networks (CNN) for HRRP denoising reconstruction and recognition. SDAE can denoise and reconstruct the HRRP data to enhance the data quality and expand the target dataset. By introducing label constraints in SDAE, the ability to associate the hidden features with the categories they belong to can be strengthened to accelerate the model convergence. The CNN is used to classify the HRRP. Experimental results show that the proposed method in this paper demonstrates superior recognition performance in target recognition under small samples and strong noise scenarios, and is able to overcome the adverse effects of fewer samples and higher noise on HRRP recognition to a certain extent.

Key words: high reslution range profile (HRRP), target recognition, incomplete data, noise interference, stacked denosing auto-encoders(SDAE), convolution neural network(CNN)

摘要:

雷达空中目标高分辨距离像(high resolution range profile, HRRP)常被用于开展目标识别,在实际运行过程中,数据样本不完备和噪声干扰往往会给雷达目标识别带来挑战。为克服这一挑战,将堆栈去噪自编码器(stacked denoising auto-encoders, SDAE)和卷积神经网络(convolutional neural networks,CNN)结合起来用于HRRP的去噪重构与识别,并添加标签约束以加速模型收敛。SDAE可以对HRRP数据进行去噪重构,增强数据质量,扩充目标数据集,并引入标签约束,强化隐特征与所属类别相关联的能力,加速模型收敛,CNN用于对HRRP进行分类。实验结果表明,所提方法在小样本、强噪声场景下的目标识别中展现了较优的识别性能和识别精度,能够在一定程度克服样本少、噪声高对HRRP识别的不良影响。

关键词: 高分辨距离像, 目标识别, 数据不完备, 噪声干扰, 堆栈去噪自编码器, 卷积神经网络

CLC Number: