1 |
崇元, 李加祥. 基于作战知识的海战场对空防御深层态势分析[J]. 现代防御技术, 2016, 44(1): 112-117.
|
|
CHONG Yuan, LI Jiaxiang. Situation Analysis Hierarchical on Naval Battlefield for Air Defense Based on Operational Knowledge[J]. Modern Defence Technology, 2016, 44(1): 112-117.
|
2 |
BIZER C, HEATH T, BERNERS-LEE T. Linked Data-the Story So Far[J]. International Journal on Semantic Web and Information Systems, 2009, 5(3): 1-22.
|
3 |
李涛, 王次臣, 李华康. 知识图谱的发展与构建[J]. 南京理工大学学报, 2017, 41(1): 22-34.
|
|
LI Tao, WANG Cichen, LI Huakang. Development and Construction of Knowledge Graph[J]. Journal of Nanjing University of Science and Technology, 2017, 41(1): 22-34.
|
4 |
林旺群, 汪淼, 王伟, 等. 知识图谱研究现状及军事应用[J]. 中文信息学报, 2020, 34(12): 9-16.
|
|
LIN Wangqun, WANG Miao, WANG Wei, et al. A Survey to Knowledge Graph and Its Military Application[J]. Journal of Chinese Information Processing, 2020, 34(12): 9-16.
|
5 |
马玉凤, 向南, 豆亚杰, 等. 军事系统工程中的知识图谱应用及研究[J]. 系统工程与电子技术, 2022, 44(1): 146-153.
|
|
MA Yufeng, XIANG Nan, DOU Yajie, et al. Application and Research of Knowledge Graph in Military System Engineering[J]. Systems Engineering and Electronics, 2022, 44(1): 146-153.
|
6 |
许凯, 曾云秀, 武万森, 等. 面向计算机生成兵力的意图识别行为建模框架[J]. 系统仿真学报, 2021, 33(10): 2344-2355.
|
|
XU Kai, ZENG Yunxiu, WU Wansen, et al. Research on CGF-Oriented Intention Recognition Behavioral Modeling Framework[J]. Journal of System Simulation, 2021, 33(10): 2344-2355.
|
7 |
李香亭. 态势估计中目标意图识别的研究与仿真[D]. 太原: 中北大学, 2012.
|
|
LI Xiangting. The Research and Implementation of Situation Assessment in the Target Intention Recognition[D]. Taiyuan: North University of China, 2012.
|
8 |
赵福均, 周志杰, 胡昌华, 等. 基于置信规则库和证据推理的空中目标意图识别方法[J]. 电光与控制, 2017, 24(8): 15-19, 50.
|
|
ZHAO Fujun, ZHOU Zhijie, HU Changhua, et al. Aerial Target Intention Recognition Approach Based on Belief-Rule-Base and Evidential Reasoning[J]. Electronics Optics & Control, 2017, 24(8): 15-19, 50.
|
9 |
杨璐, 刘付显, 朱丰, 等. 基于贝叶斯推理的海战场空中目标意图分层识别方法[J]. 火力与指挥控制, 2018, 43(7): 86-93.
|
|
YANG Lu, LIU Fuxian, ZHU Feng, et al. Hierarchical Recognition Method of Hostile Air-Targets in Sea Battlefields Based on Bayesian Deduction[J]. Fire Control & Command Control, 2018, 43(7): 86-93.
|
10 |
周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11): 195-203.
|
|
ZHOU Wangwang, YAO Peiyang, ZHANG Jieyong, et al. Combat Intention Recognition for Aerial Targets Based on Deep Neural Network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 195-203.
|
11 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling Relational Data with Graph Convolutional Networks[C]∥The Semantic Web. Cham: Springer International Publishing, 2018: 593-607.
|
12 |
SHANG Chao, TANG Yun, HUANG Jing, et al. End-to-End Structure-Aware Convolutional Networks for Knowledge Base Completion[C]∥Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2019: 3060-3067.
|
13 |
BANSAL T, JUAN Dacheng, RAVI S, et al. A2N: Attending to Neighbors for Knowledge Graph Inference[C]∥Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: ACL, 2019: 4387-4392.
|
14 |
NATHANI D, CHAUHAN J, SHARMA C, et al. Learning Attention-Based Embeddings for Relation Prediction in Knowledge Graphs[C]∥Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: ACL, 2019: 4710-4723.
|
15 |
陈成, 张皞, 李永强, 等. 关系生成图注意力网络的知识图谱链接预测[J]. 浙江大学学报(工学版), 2022, 56(5): 1025-1034.
|
|
CHEN Cheng, ZHANG Hao, LI Yongqiang, et al. Knowledge Graph Link Prediction Based on Relational Generative Graph Attention Network[J]. Journal of Zhejiang University(Engineering Science Edition), 2022, 56(5): 1025-1034.
|
16 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017: 6000-6010.
|
17 |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D Knowledge Graph Embeddings[C]∥Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2018: 1811-1818.
|
18 |
ZHANG Yongqi, YAO Quanming, SHAO Yingxia, et al. NSCaching: Simple and Efficient Negative Sampling for Knowledge Graph Embedding[C]∥2019 IEEE 35th International Conference on Data Engineering (ICDE). Piscataway, NJ, USA: IEEE, 2019: 614-625.
|
19 |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating Embeddings for Modeling Multi-relational Data[C]∥Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2013: 2787-2795.
|
20 |
YANG Bishan, YIH W T, HE Xiaodong, et al. Embedding Entities and Relations for Learning and Inference in Knowledge Bases[EB/OL]. (2015-08-29)[2023-02-20]. .
|
21 |
NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network[C]∥Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: ACL, 2018: 327-333.
|