Modern Defense Technology ›› 2025, Vol. 53 ›› Issue (2): 74-81.DOI: 10.3969/j.issn.1009-086x.2025.02.008

• MILITARY INTELLIGENCE • Previous Articles     Next Articles

A Method of Target Group Type Identification Oriented System Combat

Wendong ZHAO1,2, Mingzhi ZHANG2, Shengming GUO2   

  1. 1.PLA 61267 Troops,Beijing 101114,China
    2.Joint Operations College,National Defence University,Beijing 100091,China
  • Received:2023-12-31 Revised:2024-03-27 Online:2025-04-28 Published:2025-04-30

一种面向体系作战的目标群体类型判识方法

赵文栋1,2, 张明智2, 郭圣明2   

  1. 1.中国人民解放军61267部队,北京 101114
    2.国防大学 联合作战学院,北京 100091
  • 作者简介:赵文栋(1987-),男,辽宁大连人。博士生,研究方向为联合作战体系分析与评估。

Abstract:

In order to assist commanders in making decisions efficiently, this paper makes researches on the grouping of operational targets in situation awareness. Aiming at the characteristics of numerous targets, different functions and complex interrelationships in the operational system of systems, the graph matching idea is used to solve the target group type identification problem. A graph-based target group representation method is proposed, where the target is abstracted as a node and the interrelation is abstracted as an edge, which depicts the targets and their mutual relationship. A graph matching network model is designed to identify the type of target group. The model can jointly learn the vector representation of the group to be identified and the group of known types. The type of target group can be identified by calculating the similarity between the two groups. Experimental results show that the proposed method can efficiently identify the type of target groups.

Key words: situation awareness, target group, graph matching networks, similarity computation, graph neural network, attention mechanism

摘要:

为辅助指挥人员高效地进行决策,研究了态势感知中的目标群体类型判识问题。针对体系作战中目标数量众多、类型功能各异、相互关系复杂的特点,运用图匹配思想对目标群体类型判识问题进行求解。提出了基于图的目标群体表示方法,将目标抽象为节点,关系抽象为边,刻画了目标及其之间的相互关系;设计了一种用于判识目标群体类型的图匹配网络模型,该模型能够联合学习待判识目标群体和已知类型群体的向量表示,通过计算二者的相似性来判识群体的类型。实验表明,所提方法可以有效地判识出目标群体的类型。

关键词: 态势感知, 目标群体, 图匹配网络, 相似性计算, 图神经网络, 注意力机制

CLC Number: