Modern Defense Technology ›› 2025, Vol. 53 ›› Issue (5): 1-10.DOI: 10.3969/j.issn.1009-086x.2025.05.001
• SPECIAL COLUMN:AIRCRAFT AND TARGET CHARACTERISTICS •
Han LI, Guoxu FENG, Jie HUANG, Juyi LONG
Received:2025-03-10
Revised:2025-07-09
Online:2025-10-28
Published:2025-11-03
Contact:
Guoxu FENG
通讯作者:
冯国旭
作者简介:李涵(2000-),男,白族,云南昆明人。硕士生,研究方向为飞行器设计。
CLC Number:
Han LI, Guoxu FENG, Jie HUANG, Juyi LONG. Development Review of Aerial Target in China and Abroad[J]. Modern Defense Technology, 2025, 53(5): 1-10.
李涵, 冯国旭, 黄杰, 龙聚壹. 国外空中靶标发展现状综述[J]. 现代防御技术, 2025, 53(5): 1-10.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xdfyjs.cn/EN/10.3969/j.issn.1009-086x.2025.05.001
| 型号 | 最大平飞 数 | 最大起飞 质量/kg | 最大机动 过载(g) | 最高实用 升限/m |
|---|---|---|---|---|
| BQM-167A | 0.91 | 930 | +9 | 15 240 |
| BQM-167i | 0.91 | 646 | +9 | 15 000 |
| BQM-177A | 0.95 | 680 | +9 | 12 192 |
| BQM-177i | 0.95 | 635 | +9 | 12 192 |
| MQM-178 | 0.69 | - | +9 | 10 668 |
| XQ-58A | 0.85 | 2 722 | - | 13 716 |
Table 1 Kratos target in the United States
| 型号 | 最大平飞 数 | 最大起飞 质量/kg | 最大机动 过载(g) | 最高实用 升限/m |
|---|---|---|---|---|
| BQM-167A | 0.91 | 930 | +9 | 15 240 |
| BQM-167i | 0.91 | 646 | +9 | 15 000 |
| BQM-177A | 0.95 | 680 | +9 | 12 192 |
| BQM-177i | 0.95 | 635 | +9 | 12 192 |
| MQM-178 | 0.69 | - | +9 | 10 668 |
| XQ-58A | 0.85 | 2 722 | - | 13 716 |
| 型号 | 最大平飞 速度 | 最大飞行 距离/km | 续航 | 最高实用升限/m |
|---|---|---|---|---|
| Jet 80+ | 200 m/s | >100 | >45 min | 9 144 |
| Whirlwind | 100 m/s | >100 | >90 min | 6 096 |
| Rattler ST | Ma数 2.6 | >100 | 15 s (超声速阶段) | 8 000 |
Table 2 Target of QinetiQ in the United Kingdom
| 型号 | 最大平飞 速度 | 最大飞行 距离/km | 续航 | 最高实用升限/m |
|---|---|---|---|---|
| Jet 80+ | 200 m/s | >100 | >45 min | 9 144 |
| Whirlwind | 100 m/s | >100 | >90 min | 6 096 |
| Rattler ST | Ma数 2.6 | >100 | 15 s (超声速阶段) | 8 000 |
| 指标 | 美国 | 俄罗斯 | 以色列 | 英国 | 德国法国 | 意大利法国 |
|---|---|---|---|---|---|---|
| 代表型号 | BQM-167A, MQM-178Firejet | E95M,Sarma | Sky Siren, Harpoon | Banshee Jet 80, CTM-200 | Do-DT45 | Mirach系列 |
| Ma数范围 | 1.2~5 | 4.5~6 | 0.8~0.9 | 0.7~0.9 | 0.3~0.75 | 0.6~0.75 |
| 任务载荷 | 吊舱、诱饵弹、多弹头模拟 | 干扰机、热信号增强器 | DRFM干扰机、诱饵弹 | 龙伯球、箔条弹 | DRFM干扰机 | 箔条散布器、龙波透镜 |
| 技术特色 | 跨域协同、超声速隐身 | 高超声速突防、抗干扰导航 | 电子战压制、AI动态规避 | 模块化设计、绿色材料 | 具有多种搭载平台设备 | 舰载DRFM干扰 |
Table 3 Comparison of targets among different countries
| 指标 | 美国 | 俄罗斯 | 以色列 | 英国 | 德国法国 | 意大利法国 |
|---|---|---|---|---|---|---|
| 代表型号 | BQM-167A, MQM-178Firejet | E95M,Sarma | Sky Siren, Harpoon | Banshee Jet 80, CTM-200 | Do-DT45 | Mirach系列 |
| Ma数范围 | 1.2~5 | 4.5~6 | 0.8~0.9 | 0.7~0.9 | 0.3~0.75 | 0.6~0.75 |
| 任务载荷 | 吊舱、诱饵弹、多弹头模拟 | 干扰机、热信号增强器 | DRFM干扰机、诱饵弹 | 龙伯球、箔条弹 | DRFM干扰机 | 箔条散布器、龙波透镜 |
| 技术特色 | 跨域协同、超声速隐身 | 高超声速突防、抗干扰导航 | 电子战压制、AI动态规避 | 模块化设计、绿色材料 | 具有多种搭载平台设备 | 舰载DRFM干扰 |
| [1] | Kratos Defense & Security Solutions, Inc. Kratos XQ-58A Demonstrates Collaborative EW and Kill Chain Closure under USMC Control in Large Force Exercise[EB/OL]. (2024-12-05) [2025-02-27]. . |
| [2] | NEWDICK T. Russia’s Aspirational Grom Combat Drone’s Design Totally Changes, Ditches Stealth for Speed[EB/OL]. (2024-08-13) [2025-02-27]. . |
| [3] | QinetiQ. The Rattler STTM Uncrewed Aerial Vehicle (UAV) is a Cost-Effective Supersonic Target Platform Emulating Various Advanced Missile Threats, Designed for Threat Representation and Military Operational Training[EB/OL]. [2025-02-27]. . |
| [4] | RUSI. Israel RUSI Armed Drones in the Middle East[EB/OL]. [2025-02-27]. . |
| [5] | 飛行開発実験団. 過去の主要試験等 その他[EB/OL] [2024-10-20]. . |
| [6] | LEONARDO. MIRACH 40: Integrated Aerial Target System[EB/OL]. [2024-10-02]. . |
| [7] | LEONARDO. MIRACH 100/5: Integrated Aerial Target System[EB/OL]. [2024-10-02]. . |
| [8] | AIRBUS. Target Drone Systems[EB/OL]. [2024-10-02]. . |
| [9] | QinetiQ. QinetiQ to Deliver Unique Banshee Jet 80+ Target System to US Army[EB/OL]. (2023-05-17) [2025-02-27]. . |
| [10] | QinetiQ. Featuring industry-leading speed and enhanced power, The BansheeTM Jet 80+ Uncrewed Aerial Vehicle (UAV) is a Dual-Jet Training Target with Impressive Payload Capacity Designed for Threat Representation and Military Operational Training[EB/OL]. [2025-02-27]. . |
| [11] | IAI. ROTEM Tactical Vertical Take-Off and Lading (VTOL) Loitering Munition[EB/OL]. (2020-07-09) [2025-02-27]. . |
| [12] | Corporation Schiebel. CAMCOPTER® S-100 Unmanned Air System[EB/OL]. [2025-02-27]. . |
| [13] | DRDO. DRDO Conducts Successful Flight Test of ABHYAS Drone[EB/OL]. (2019-05-14) [2025-02-27]. . |
| [14] | 杜大全, 胡桂阳, 孟达. 新一代靶机系统发展研究[J]. 航空兵器, 2023, 30(6): 27-31. |
| DU Daquan, HU Guiyang, MENG Da. Research on the Development of New Generation Target Drone System[J]. Aero Weaponry, 2023, 30(6): 27-31. | |
| [15] | 穆阳, 李皓, 王震, 等. 无人目标机隐身优化设计与改装技术研究[J]. 西北工业大学学报, 2020, 38(2): 246-252. |
| MU Yang, LI Hao, WANG Zhen, et al. Optimized Stealth Design and Remolding of Target Unmanned Aerial Vehicle[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 246-252. | |
| [16] | 陈易诚, 涂建勇, 李鑫, 等. 雷达/红外兼容隐身材料设计原理及研究进展[J]. 材料导报, 2025, 39(6): 44-53. |
| CHEN Yicheng, TU Jianyong, LI Xin, et al. Design Principle and Research Progress of Radar/Infrared Compatible Stealth Materials[J]. Materials Reports, 2025, 39(6): 44-53. | |
| [17] | 王剑, 于亮亮. 外军空中靶标建设及其对我军的启示[C]∥第一届靶标装备发展学术论坛, 2019: 400-402. |
| WANG Jian, YU Liangliang. Foreign Military Aerial Target Construction and Its Enlightenment to Our Military[C]∥The First Academic Forum on Target Equipment Development. [S.l.:s.n.], 2019: 400-402. | |
| [18] | BOEING. MA-28[EB/OL]. [2025-02-27]. . |
| [19] | Airforce Technology. Skyborg: The US Air Force’s Future AI Fleet[EB/OL]. (2019-08-28) [2025-02-27]. . |
| [20] | Anon. Euroswarm Unmanned Heterogeneous Swarm of Sensor Platforms[EB/OL]. [2025-02-27]. . |
| [21] | 张雷, 王道波, 高宇辉, 等. 基于粒子群优化的无人战斗机编队任务协调方法研究[J]. 系统工程与电子技术, 2009, 31(2): 439-442. |
| ZHANG Lei, WANG Daobo, GAO Yuhui, et al. Study on Uninhabited Combat Air Vehicle Formation Tasks Scheduling Method Based on Particle Swarm Optimization Algorithm[J]. Systems Engineering and Electronics, 2009, 31(2): 439-442. | |
| [22] | 林娜, 刘二超. 基于改进蚁群算法的无人机动态航路规划[J]. 计算机测量与控制, 2016, 24(3): 149-153. |
| LIN Na, LIU Erchao. UAV Route Planning in Dynamic Environment Based on Modified Ant Colony Opimization[J]. Computer Measurement & Control, 2016, 24(3): 149-153. | |
| [23] | 柏婷婷. 基于鸽群智能的无人靶机编队控制和任务规划研究[D]. 南京: 南京航空航天大学, 2023. |
| BAI Tingting. Research on Formation Control and Mission Planning of Unmanned Target Drone Based on Pigeon Flock Intelligence[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023. | |
| [24] | 孙明霞, 梁春华, 索德军, 等. 美国第6代战斗机发动机进展分析[J]. 航空发动机, 2021, 47(3): 1-7. |
| SUN Mingxia, LIANG Chunhua, SUO Dejun, et al. Analysis of U.S. Sixth Generation Fighter Engine Progresses[J]. Aeroengine, 2021, 47(3): 1-7. |
| [1] | Shixiang YAN, Haijun LIU. Sensor-Weapon-Target Assignment Method Based on Deep Reinforcement Learning [J]. Modern Defense Technology, 2025, 53(4): 10-17. |
| [2] | Xincheng LIU, Chenyu ZHU, Yubing HAN. A Real-Time Spatial Registration Algorithm for Airborne Networked Radar Without Prior Information [J]. Modern Defense Technology, 2025, 53(4): 105-111. |
| [3] | Daquan DU, Yang ZHAO, Ping HU. Study on Target Characteristics Analysis and Firing Test Application of Radar Stealth Target Drone [J]. Modern Defense Technology, 2025, 53(4): 121-128. |
| [4] | Jin ZHANG, Gang WANG, Xiangke GUO, Tengda LI, Xiangyu LIU, Runyu HUANG. Research and Analysis on the Construction and Development of Air and Missile Defense Battle Kill Chains/Web [J]. Modern Defense Technology, 2025, 53(4): 18-26. |
| [5] | Xin LIU, Kan WANG, Lican DAI, Kaichen CAO, Lianggang WANG. Intelligent Method Development of Strategic Intelligence Warning and Prediction [J]. Modern Defense Technology, 2025, 53(4): 36-49. |
| [6] | Guanghan XIAO, Luming REN, Junhu LIU, Zeyan HU, Xiaojian KONG. A Non-cooperative Orbit Target Positioning Method Based on Acceleration Compensation [J]. Modern Defense Technology, 2025, 53(4): 74-82. |
| [7] | Kaiyuan YANG, Chao MING, Xiaoming WANG. An Angle-Constrained Cooperative Guidance Law Based on a Novel Second-Order Consensus Protocol [J]. Modern Defense Technology, 2025, 53(4): 83-92. |
| [8] | Wanchun CHEN, Jia ZHENG, Xuehe ZHENG, Qi YU, Peng ZENG, Chao WANG. Trajectory Planning Method for Boost Phase Interceptor Based on Adaptive Energy Allocation [J]. Modern Defense Technology, 2025, 53(3): 103-111. |
| [9] | Guobin FENG, Wensheng GUO, peng WANG, Likai ZENG, Bing XUE. Research on Cooperative Target Location of Multi-platform Active and Passive Radar [J]. Modern Defense Technology, 2025, 53(3): 129-138. |
| [10] | Shoufeng WANG. Estimation Method of Future Point of Unpowered Glide Targets [J]. Modern Defense Technology, 2025, 53(3): 167-173. |
| [11] | Peng YU, Qunshuo WEI, Wei LIU, Meng LI. Current Situation and Development Trends and Operational Scenarios of the “Loyal Wingman” [J]. Modern Defense Technology, 2025, 53(3): 23-31. |
| [12] | Jianguo YIN, Wen SHENG, Meng ZHAO, He JIANG. A Method of HRRP Reconstruction and Recognition:SDAE-CNN with Label Constraints [J]. Modern Defense Technology, 2025, 53(3): 32-41. |
| [13] | Daquan DU, Changjiang DONG. Research on the Development Trend of Target Drone [J]. Modern Defense Technology, 2025, 53(3): 42-48. |
| [14] | Ke LIU. Concept and Scenario Design of Agile Navigation Warfare Supported by Low-Orbit Constellation [J]. Modern Defense Technology, 2025, 53(2): 37-44. |
| [15] | Wendong ZHAO, Mingzhi ZHANG, Shengming GUO. A Method of Target Group Type Identification Oriented System Combat [J]. Modern Defense Technology, 2025, 53(2): 74-81. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||