Modern Defense Technology ›› 2026, Vol. 54 ›› Issue (1): 14-29.DOI: 10.3969/j.issn.1009-086x.2026.01.002

• SPECIAL COLUMN • Previous Articles     Next Articles

Research on UAV Path Planning Based on an Improved A*-DWA Hierarchical Fusion Algorithm

Xucheng CHANG1, Xinhui ZHANG2, Shuailong DANG2, Feng ZHU2, Jingyu WANG2, Gaohan XU2   

  1. 1.School of Automation,Zhengzhou University of Aeronautics,Zhengzhou 450046,China
    2.School of Aerospace Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450046,China
  • Received:2025-10-13 Revised:2026-01-04 Online:2026-01-28 Published:2026-02-11
  • Contact: Xinhui ZHANG

面向无人机路径规划的A*-DWA分层融合算法

常绪成1, 张心慧2, 党帅龙2, 朱锋2, 王敬宇2, 徐高涵2   

  1. 1.郑州航空工业管理学院 自动化学院,河南 郑州 450046
    2.郑州航空工业管理学院 航空宇航学院,河南 郑州 450046
  • 通讯作者: 张心慧
  • 作者简介:常绪成(1983-),男,山东泰安人,副教授,博士,研究方向为多智能体协同控制。
  • 基金资助:
    中国高校产学研创新基金(2024ZY019);河南省校企协同创新项目(26AXQXT109);郑州航空工业管理学院研究生教育创新计划基金(2025CX141);航空科学基金(20200001055001);河南省自然科学基金面上项目(252300421888);河南省科技攻关计划(252102220056);河南省科技攻关计划(252102240106);河南省高等学校重点科研项目(26B590002);郑州航院科研团队(24ZHTD01003)

Abstract:

To address the issues of low search efficiency, poor path smoothness, and limited local obstacle avoidance in traditional A* algorithms within complex 3D environments, this paper proposed a hierarchical fusion algorithm combining A* and DWA. The algorithm first extended the A* algorithm into 3D space using a 26-neighbor node search strategy. It introduced a dynamic adjustment term into the cost evaluation function to achieve adaptive weighting, and employed the Douglas-Peucker algorithm combined with cubic B-spline curves to smooth paths. Second, it integrated a 3D-extended DWA algorithm to compensate for A*'s local obstacle avoidance limitations. A 3D dynamic window model was constructed via kinematic decoupling, and a cosine similarity measure was introduced to enhance the evaluation function, thereby improving real-time obstacle avoidance performance. Finally, a dynamic feedback mechanism was designed to enable adaptive correction of the global path, forming a closed-loop optimization system: “A* global planning -DWA local obstacle avoidance-Dynamic feedback.” Simulation results demonstrated that in both static and dynamic 3D environments, the A*-DWA hierarchical fusion algorithm significantly outperformed other comparison algorithms in path length, planning time, and path smoothness. Obstacle avoidance success rates exceeded 90% across multiple scenarios, validating the effectiveness of the A*-DWA hierarchical fusion algorithm.

Key words: A* algorithm, unmanned aerial vehicle(UAV), path planning, dynamic window approach(DWA) algorithm, B-spline curve, hierarchical fusion

摘要:

针对传统A*算法在三维复杂环境中搜索效率低、路径平滑度差以及局部避障能力有限的问题,提出一种A*-DWA分层融合算法。该算法基于26邻域节点搜索策略对A*算法进行三维空间拓展,在代价评估函数中引入动态调节项实现权重自适应调整,并结合Douglas-Peucker算法和三次B样条曲线实现路径平滑;融合三维扩展的DWA算法以弥补A*算法局部避障能力的不足,通过运动学解耦构建三维动态窗口模型,并引入余弦相似度改进评价函数,增强实时避障性能;设计动态反馈机制实现全局路径的自适应修正,形成“A*全局规划-DWA局部避障-动态反馈”的闭环优化体系。仿真结果表明,在三维静/动态环境中,A*-DWA分层融合算法的路径长度、规划时间、路径平滑度均显著优于其他对比算法,多场景下避障成功率达90%以上,验证了A*-DWA分层融合算法的有效性。

关键词: A*算法, 无人机, 路径规划, DWA算法, B样条曲线, 分层融合

CLC Number: