Modern Defense Technology ›› 2024, Vol. 52 ›› Issue (4): 24-32.DOI: 10.3969/j.issn.1009-086x.2024.04.003

• AIRCRAFT TECHNOLOGY • Previous Articles     Next Articles

Review of Optimization Algorithms for UAV Routes

Wenbiao HE, Yongjiang HU, Wenguang LI   

  1. Shijiazhuang Campus,Army Engineering University,Shijiazhuang 050003,China
  • Received:2023-03-30 Revised:2023-07-24 Online:2024-08-28 Published:2024-08-26

面向无人机航路的优化算法研究综述

何文彪, 胡永江, 李文广   

  1. 陆军工程大学 石家庄校区,河北 石家庄 050003
  • 作者简介:何文彪(1998-),男,河北沧州人。硕士生,研究方向为无人机任务规划。
  • 基金资助:
    装备综合研究项目(XX20212A0211XX)

Abstract:

With the increasing mission complexity and environmental uncertainty of UAV, the requirements for route planning also increase, and the complexity of the route planning problem gradually increases from single UAV route planning to multi-UAV planning, and from single mission to multi-mission. To find a solution to the UAV route planning problem, a comprehensive analysis from aspects of concept, connotation, task modeling and algorithm analysis is presented. To solve the problems of existing route planning algorithms, such as, poor optimal path effect, slow convergence speed and tendency of falling into local optimization, applications and problems of UAV route planning with A* algorithm, particle swarm algorithm, genetic algorithm as well as ant colony algorithm are analyzed, and directions of algorithm optimizations and improvements are proposed.

Key words: path planning, constraints, A* algorithm, particle swarm optimization(PSO), genetic algorithm(GA), ant colony optimization(ACO)

摘要:

随着无人机任务复杂性以及环境不确定性的不断提高,对航路规划的要求也随之提高,航路规划问题复杂度逐渐增加,由单无人机航路规划向多无人机规划发展,由单任务向多任务发展。针对无人机航路规划问题,从概念内涵、任务建模、算法解析等方面进行了综合分析。针对现有航路规划算法存在的最优路径效果较差、收敛速度慢以及易陷入局部最优等问题,重点分析了A*算法、粒子群算法、遗传算法、蚁群算法在无人机航路规划中的应用及存在的问题,提出了优化改进的方向。

关键词: 航路规划, 约束条件, A*算法, 粒子群算法, 遗传算法, 蚁群算法

CLC Number: