Modern Defense Technology ›› 2024, Vol. 52 ›› Issue (5): 40-50.DOI: 10.3969/j.issn.1009-086x.2024.05.006
• NAVIGATION,GUIDANCE AND CONTROL • Previous Articles Next Articles
Weiqiang TANG, Chengchao JIA, Wenke SHI, Tianpeng XU
Received:2023-10-26
Revised:2023-11-29
Online:2024-10-28
Published:2024-11-01
作者简介:唐伟强(1978-),男,广西梧州人。副教授,博士,研究方向为飞行器动力学与控制。
基金资助:CLC Number:
Weiqiang TANG, Chengchao JIA, Wenke SHI, Tianpeng XU. Research on Integral Sliding Mode Active Disturbance Rejection Control for Hypersonic Vehicles[J]. Modern Defense Technology, 2024, 52(5): 40-50.
唐伟强, 甲成超, 石文科, 许天鹏. 高超声速飞行器积分滑模自抗扰控制研究[J]. 现代防御技术, 2024, 52(5): 40-50.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xdfyjs.cn/EN/10.3969/j.issn.1009-086x.2024.05.006
| 参数 | 值 | 参数 | 值 | 参数 | 值 |
|---|---|---|---|---|---|
| 0.5 | 0.78 | ||||
| 0.25 | 0.05 | 1 | |||
| 0.001 | 8 | 10 | |||
| 0.01 |
Table 1 Parameters of traditional sliding mode active disturbance rejection controller
| 参数 | 值 | 参数 | 值 | 参数 | 值 |
|---|---|---|---|---|---|
| 0.5 | 0.78 | ||||
| 0.25 | 0.05 | 1 | |||
| 0.001 | 8 | 10 | |||
| 0.01 |
| 参数 | 值 | 参数 | 值 | 参数 | 值 |
|---|---|---|---|---|---|
| 3 | 200 | 0.05 | |||
| 10 | 400 | 0.05 | |||
| 10 | 600 | 8 | |||
| 10 | 0.5 | 2 | |||
| 0.001 | 0.5 | 10 | |||
| 0.001 | 0.5 | 3 | |||
| 0.001 | 0.5 | 0.000 6 | |||
| 0.001 | 0.5 | 10 | |||
| 400 | 0.5 | 16 | |||
| 800 | 0.05 | 64 | |||
| 8 000 | 0.05 | 2 | |||
| 200 | 0.05 | 100 | |||
| 800 | 0.25 | 0.02 |
Table 2 Parameters of integral sliding mode active disturbance rejection controller
| 参数 | 值 | 参数 | 值 | 参数 | 值 |
|---|---|---|---|---|---|
| 3 | 200 | 0.05 | |||
| 10 | 400 | 0.05 | |||
| 10 | 600 | 8 | |||
| 10 | 0.5 | 2 | |||
| 0.001 | 0.5 | 10 | |||
| 0.001 | 0.5 | 3 | |||
| 0.001 | 0.5 | 0.000 6 | |||
| 0.001 | 0.5 | 10 | |||
| 400 | 0.5 | 16 | |||
| 800 | 0.05 | 64 | |||
| 8 000 | 0.05 | 2 | |||
| 200 | 0.05 | 100 | |||
| 800 | 0.25 | 0.02 |
| 1 | DING Yibo, YUE Xiaokui, CHEN Guangshan, et al. Review of Control and Guidance Technology on Hypersonic Vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18. |
| 2 | SZIROCZAK D, SMITH H. A Review of Design Issues Specific to Hypersonic Flight Vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. |
| 3 | ZUO Renwei, LI Yinghui, Maolong LÜ, et al. Realization of Trajectory Precise Tracking for Hypersonic Flight Vehicles with Prescribed Performances[J]. Aerospace Science and Technology, 2021, 111: 106554. |
| 4 | TANG Weiqiang, LONG Wenkun, GAO Haiyan. Model Predictive Control of Hypersonic Vehicles Accommodating Constraints[J]. IET Control Theory & Applications, 2017, 11(15): 2599-2606. |
| 5 | HU Chaofang, YANG Xiaohe, WEI Xiaofang, et al. Robust Model Predictive Control for Hypersonic Vehicle with State-Dependent Input Constraints and Parameter Uncertainty[J]. International Journal of Robust and Nonlinear Control, 2021, 31(18): 9676-9691. |
| 6 | HAN Tuo, HU Qinglei, SHIN H S, et al. Incremental Twisting Fault Tolerant Control for Hypersonic Vehicles with Partial Model Knowledge[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2): 1050-1060. |
| 7 | AN Hao, WU Qianqian, WANG Guan, et al. Adaptive Compound Control of Air-Breathing Hypersonic Vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4519-4532. |
| 8 | LI Yajun, HOU Mingshan, LIANG Shuai, et al. Predefined-Time Adaptive Fault-Tolerant Control of Hypersonic Flight Vehicles Without Overparameterization[J]. Aerospace Science and Technology, 2020, 104: 105987. |
| 9 | YE Hui, JIANG Bin. Adaptive Switching Control for Hypersonic Vehicle with Uncertain Control Direction[J]. Journal of the Franklin Institute, 2020, 357(13): 8851-8869. |
| 10 | ZHOU Linin, LIU Lei, CHENG Zhongtao, et al. Adaptive Dynamic Surface Control Using Neural Networks for Hypersonic Flight Vehicle with Input Nonlinearities[J]. Optimal Control Applications and Methods, 2020, 41(6): 1904-1927. |
| 11 | SHAO Xingling, SHI Yi, ZHANG Wendong. Fault-Tolerant Quantized Control for Flexible Air-Breathing Hypersonic Vehicles with Appointed-Time Tracking Performances[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1261-1273. |
| 12 | XIA Rongsheng, CHEN Mou, WU Qingxian, et al. Neural Network Based Integral Sliding Mode Optimal Flight Control of Near Space Hypersonic Vehicle[J]. Neurocomputing, 2020, 379: 41-52. |
| 13 | WANG Fang, GUO Ying, WANG Kun, et al. Disturbance Observer Based Robust Backstepping Control Design of Flexible Air-Breathing Hypersonic Vehicle[J]. IET Control Theory & Applications, 2019, 13(4): 572-583. |
| 14 | 刘晓岑, 吴云洁, 徐鹏. 考虑输入饱和的高超声速飞行器姿态控制[J]. 系统仿真学报, 2019, 31(11): 2553-2561. |
| LIU Xiaocen, WU Yunjie, XU Peng. Attitude Control of Hypersonic Vehicle Considering Input Saturation[J]. Journal of System Simulation, 2019, 31(11): 2553-2561. | |
| 15 | HAN Jingqing. From PID to Active Disturbance Rejection Control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. |
| 16 | SUN Jinlin, PU Zhiqiang, YI Jianqiang. Conditional Disturbance Negation Based Active Disturbance Rejection Control for Hypersonic Vehicles[J]. Control Engineering Practice, 2019, 84: 159-171. |
| 17 | 朴敏楠, 孙明玮, 黄建, 等. 基于自抗扰的高超声速飞行器姿态鲁棒控制[J]. 控制工程, 2019, 26(9): 1627-1635. |
| PIAO Minnan, SUN Mingwei, HUANG Jian, et al. Robust Attitude Control of Hypersonic Vehicle Based on Active Disturbance Rejection Control[J]. Control Engineering of China, 2019, 26(9): 1627-1635. | |
| 18 | 吴艳, 王丽芳, 李芳. 基于滑模自抗扰的智能车路径跟踪控制[J]. 控制与决策, 2019, 34(10): 2150-2156. |
| WU Yan, WANG Lifang, LI Fang. Intelligent Vehicle Path Following Control Based on Sliding Mode Active Disturbance Rejection Control[J]. Control and Decision, 2019, 34(10): 2150-2156. | |
| 19 | 郭孟科. 基于自抗扰控制技术的高超声速飞行器控制研究[D]. 兰州: 兰州理工大学, 2021. |
| GUO Mengke. Research on Control of Hypersonic Vehicle Based on Active Disturbance Rejection Control Technology[D]. Lanzhou: Lanzhou University of Technology, 2021. | |
| 20 | GAO Ke, SONG Jia, WANG Xu, et al. Fractional-Order Proportional-Integral-Derivative Linear Active Disturbance Rejection Control Design and Parameter Optimization for Hypersonic Vehicles with Actuator Faults[J]. Tsinghua Science and Technology, 2021, 26(1): 9-23. |
| 21 | WANG Bo, LIU Wei, CHENG Zhongtao, et al. Active Disturbance Rejection Attitude Control for Hypersonic Vehicle Based on Intelligent Stochastic Robust Optimization Method[J]. Complexity, 2020, 2020: 3240405. |
| 22 | 高科, 宋佳, 艾绍洁, 等. 高超声速飞行器再入段LQR自抗扰控制方法设计[J]. 宇航学报, 2020, 41(11): 1418-1423. |
| GAO Ke, SONG Jia, AI Shaojie, et al. LQR Active Disturbance Rejection Control Method Design for Hypersonic Vehicles in Reentry Phase[J]. Journal of Astronautics, 2020, 41(11): 1418-1423. | |
| 23 | CHI Haihong, YU Furui. Compound Control for Hypersonic Vehicles Based on Dynamic Compensation[C]∥2018 Chinese Automation Congress (CAC). Piscataway: IEEE, 2018: 3523-3528. |
| 24 | 赵海香, 陈松林, 李明. 三阶扩张状态观测器稳定的一个充分条件[C]∥第三十二届中国控制会议论文集. 上海: 上海系统科学出版社, 2013: 1526-1531. |
| ZHAO Haixiang, CHEN Songlin, LI Ming. A Sufficient Condition for the Stability of the Third-Order Extended State Observer[C]∥The 32nd Chinese Control Conference. Shanghai: Shanghai System Science Press, 2013: 1526-1531. | |
| 25 | XU Bin, GAO Daoxiang, WANG Shixing. Adaptive Neural Control Based on HGO for Hypersonic Flight Vehicles[J]. Science China Information Sciences, 2011, 54(3): 511-520. |
| 26 | 李鹏, 郑志强. 非线性积分滑模控制方法[J]. 控制理论与应用, 2011, 28(3): 421-426. |
| LI Peng, ZHENG Zhiqiang. Sliding Mode Control Approach with Nonlinear Integrator[J]. Control Theory & Applications, 2011, 28(3): 421-426. | |
| 27 | BU Xiangwei, JIANG Baoxu, LEI Humin. Low-Complexity Fuzzy Neural Control of Constrained Waverider Vehicles via Fragility-Free Prescribed Performance Approach[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(7): 2127-2139. |
| 28 | BU Xiangwei, JIANG Baoxu, LEI Humin. Nonfragile Quantitative Prescribed Performance Control of Waverider Vehicles with Actuator Saturation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3538-3548. |
| 29 | IOANNOU P A, SUN Jing. Robust adaptive control[M]. Upper Saddle River: PTR Prentice-Hall, 1996: 75-76. |
| 30 | 黄瑞, 陈建辉, 高敏, 等. 基于改进ADRC的巡飞弹纵向控制系统研究[J]. 电光与控制, 2017, 24(7): 41-45. |
| HUANG Rui, CHEN Jianhui, GAO Min, et al. On Vertical Control System of Loitering Missile Based on Improved ADRC[J]. Electronics Optics & Control, 2017, 24(7): 41-45. |
| [1] | Hongyan ZANG, Kai WANG, Changsheng GAO, Wuxing JING, Yuexin WANG. Trajectory Tracking of Hypersonic Vehicles Based on Moving Horizon Estimation [J]. Modern Defense Technology, 2024, 52(2): 132-144. |
| [2] | Xin YI, Chunyan WANG, Wei DONG, Pengyu ZHANG, Xiaojian LI, Jianan WANG, Fang DENG. Active Disturbance Rejection Control for Transpiration Cooling System of Hypersonic Vehicles [J]. Modern Defense Technology, 2024, 52(2): 33-41. |
| [3] | Jun-qiao CHEN, Xiao-jun WANG, Chen-jun CUI, Hai-yue WANG. Research on Erecting Strategy of Double Motor Synchronous Drive Electric Cylinder Based on Fuzzy Active Disturbance Rejection [J]. Modern Defense Technology, 2022, 50(3): 119-126. |
| [4] | WANG Peng-fei, LUO Chang, BAI Yan. Development of Near Space Hypersonic Vehicles and Defense Strategies Analysis [J]. Modern Defense Technology, 2021, 49(6): 16-21. |
| [5] | WANG Ying-chen, DUAN Xiu-sheng, SHAN Gan-lin. Deep Learning Fusion Model Diagnosis Method of Analog Circuit Fault [J]. Modern Defense Technology, 2018, 46(5): 122-128. |
| [6] | WEI Ya-li, WANG Fei, XU Xin-peng. ADRC Controller Based on PWPF for Impulse Lateral Thrust [J]. Modern Defense Technology, 2018, 46(4): 40-44. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||