Modern Defense Technology ›› 2024, Vol. 52 ›› Issue (5): 93-105.DOI: 10.3969/j.issn.1009-086x.2024.05.011
• TARGET CHARACTERISTIC, DETECTION AND TRACKING TECHNOLOGY • Previous Articles Next Articles
Xiaoli ZHOU1,2, Chao BEI1
Received:
2023-08-16
Revised:
2023-11-16
Online:
2024-10-28
Published:
2024-11-01
作者简介:
周晓丽(1992-),女,辽宁瓦房店人。博士生,研究方向为空间飞行器控制技术。
CLC Number:
Xiaoli ZHOU, Chao BEI. Application of Event Camera in Space Traffic Management[J]. Modern Defense Technology, 2024, 52(5): 93-105.
周晓丽, 贝超. 事件相机在空间交通管理领域的应用[J]. 现代防御技术, 2024, 52(5): 93-105.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xdfyjs.cn/EN/10.3969/j.issn.1009-086x.2024.05.011
1 | 张轶男, 许菁菁, 袁俊, 等. 巨型星座发展与太空现代化治理[J]. 北京航空航天大学学报(社会科学版), 2021, 34(3): 134-141. |
ZHANG Yi′nan, XU Jingjing, YUAN Jun, et al. Development of Mega-Constellations and Modern Space Governance[J]. Journal of Beijing University of Aeronautics and Astronautics(Social Sciences Edition), 2021, 34(3): 134-141. | |
2 | 孟祥利, 吴玲达, 于少波, 等. 基于分层、分域控制的空间信息网络体系结构研究[J]. 中国电子科学研究院学报, 2019, 14(11): 1214-1220. |
MENG Xiangli, WU Lingda, YU Shaobo, et al. Research on Space Information Network Architecture Based on Hierarchical and Domain-Based Control[J]. Journal of China Academy of Electronics and Information Technology, 2019, 14(11): 1214-1220. | |
3 | 王兴龙, 蔡亚星, 陈士明, 等. 多源信息融合在空间态势感知领域的应用与发展[J]. 航天返回与遥感, 2021, 42(1): 11-20. |
WANG Xinglong, CAI Yaxing, CHEN Shiming, et al. Application and Development of Multi-Source Information Fusion in Space Situational Awareness[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(1): 11-20. | |
4 | 唐匀龙, 许厚棣, 钮俊清, 等. 空间态势感知能力发展启示[J]. 舰船电子对抗, 2018, 41(2): 56-59, 91. |
TANG Yunlong, XU Houdi, NIU Junqing, et al. Enlightenment of Space Situational Awareness Capability Development[J]. Shipboard Electronic Countermeasure, 2018, 41(2): 56-59, 91. | |
5 | 孔德磊, 方正. 基于事件的视觉传感器及其应用综述[J]. 信息与控制, 2021, 50(1): 1-19. |
KONG Delei, FANG Zheng. A Review of Event-Based Vision Sensors and Their Applications[J]. Information and Control, 2021, 50(1): 1-19. | |
6 | 汤泽滢, 黄贤锋, 蔡宗宝. 国外天基空间目标监视系统发展现状与启示[J]. 航天电子对抗, 2015, 31(2): 24-26, 30. |
TANG Zeying, HUANG Xianfeng, CAI Zongbao. Development Status and Enlightenment of Foreign Space-Based Space Surveillance Systems[J]. Aerospace Electronic Warfare, 2015, 31(2): 24-26, 30. | |
7 | SILHA J, SCHILDKNECHT T, HINZE A, et al. An Optical Survey for Space Debris on Highly Eccentric and Inclined MEO Orbits[J]. Advances in Space Research, 2017, 59(1): 181-192. |
8 | 柳仲贵. 空间目标监视系统设计[D]. 南京: 南京大学, 2001. |
LIU Zhonggui. Design of Space Target Monitoring System[D]. Nanjing: Nanjing University, 2001. | |
9 | Space Debris Office ESA. ESA's Annual Space Environment Report: GEN-DB-LOG-00271-OPS-SD[R]. Darmstadt: ESA, 2019. |
10 | 李博. SpaceX启动大规模试验星部署的几点分析[J]. 国际太空, 2019(6): 12-16. |
LI Bo. Analysis of SpaceX's Launch of a Large-Scale Test Star Deployment[J]. Space International, 2019(6): 12-16. | |
11 | IAA. IAA Situation Report on Space Debris-2016[EB/OL]. (2017-08) [2023-08-09]. . |
12 | 龚自正, 李明. 美俄卫星太空碰撞事件及对航天活动的影响[J]. 航天器环境工程, 2009, 26(2): 101-106. |
GONG Zizheng, LI Ming. The Giant Collision of US-Russia Satellites in Space and Its Influences on Spaceflight Activities[J]. Spacecraft Environment Engineering, 2009, 26(2): 101-106. | |
13 | LIOU J C. USA Space Debris Environment, Operations, and Research Updates[EB/OL]. [2023-08-09]. . |
14 | MARCHAL P H. 2018 Space Debris Activities in France: Highlights: [R]. [S.l.]: 37th IADC Meeting, 2019. |
15 | LIOU J C. Highlights of 2018-2019 NASA Orbital Debris Research Activities[EB/OL]. [2023-08-09]. . |
16 | DELBRÜCK T, LINARES-BARRANCO B, CULURCIELLO E, et al. Activity-Driven, Event-Based Vision Sensors[C]∥Proceedings of 2010 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2010: 2426-2429. |
17 | LAGORCE X. Computational Methods for Event-Based Signals and Applications[D]. Parris: University of Parris VI, 2015. |
18 | IENG S H, POSCH C, BENOSMAN R. Asynchronous Neuromorphic Event-Driven Image Filtering[J]. Proceedings of the IEEE, 2014, 102(10): 1485-1499. |
19 | LINARES-BARRANCO A, PEREZ-PEÑA F, MOEYS D P, et al. Low Latency Event-Based Filtering and Feature Extraction for Dynamic Vision Sensors in Real-Time FPGA Applications[J]. IEEE Access, 2019, 7: 134926-134942. |
20 | XIAO Kanglin, CUI Xiaoxin, LIU Kefei, et al. An SNN-Based and Neuromorphic-Hardware-Implementable Noise Filter with Self-Adaptive Time Window for Event-Based Vision Sensor[C]∥2021 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE, 2021: 1-8. |
21 | LI Hongmin, LI Guoqi, SHI Luping. Super-Resolution of Spatiotemporal Event-Stream Image[J]. Neurocomputing, 2019, 335: 206-214. |
22 | LICHTSTEINER P, POSCH C, DELBRUCK T. A 128×128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor[J]. IEEE Journal of Solid-State Circuits, 2008, 43(2): 566-576. |
23 | BRANDLI C, BERNER R, YANG Minhao, et al. A 240×180 130 dB 3 µs Latency Global Shutter Spatiotemporal Vision Sensor[J]. IEEE Journal of Solid-State Circuits, 2014, 49(10): 2333-2341. |
24 | MOEYS D P, CORRADI F, LI Chenghan, et al. A Sensitive Dynamic and Active Pixel Vision Sensor for Color or Neural Imaging Applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12(1): 123-136. |
25 | GUO Menghan, DING Ruoxi, CHEN Shoushun. Live Demonstration: A Dynamic Vision Sensor with Direct Logarithmic Output and Full-Frame Picture-on-Demand[C]∥2016 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway: IEEE, 2016: 456-456. |
26 | DELBRUCK T. Frame-Free Dynamic Digital Vision [C]∥International Symposium on Secure-Life Electronics. Tokyo: University of Tokyo, 2008: 21-26. |
27 | CZECH D, ORCHARD G. Evaluating Noise Filtering for Event-Based Asynchronous Change Detection Image Sensors[C]∥2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). Piscataway: IEEE, 2016: 19-24. |
28 | MUEGGLER E, BARTOLOZZI C, SCARAMUZZA D. Fast Event Based Corner Detection[C]∥British Machine Vision Conference. London: [s.n.], 2017: 1-8. |
29 | BENOSMAN R, CLERCQ C, LAGORCE X, et al. Event-Based Visual Flow[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(2): 407-417. |
30 | BALDWIN R W, ALMATRAFI M, KAUFMAN J R, et al. Inceptive Event Time-Surfaces for Object Classification Using Neuromorphic Cameras[C]∥International Conference on Image Analysis and Recognition. Cham: Springer International Publishing, 2019: 395-403. |
31 | FANG Huachen, WU Jinjian, LI Leida, et al. AEDNet: Asynchronous Event Denoising with Spatial-Temporal Correlation Among Irregular Data[C]∥Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 1427-1435. |
32 | SCHRAML S, BELBACHIR A N, BISCHOF H. Event-Driven Stereo Matching for Real-Time 3D Panoramic Vision[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2015: 466-474. |
33 | HUANG Jing, WANG Shizheng, GUO Menghan, et al. Event-Guided Structured Output Tracking of Fast-Moving Objects Using a CeleX Sensor[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(9): 2413-2417. |
34 | GEHRIG D, REBECQ H, GALLEGO G, et al. EKLT: Asynchronous Photometric Feature Tracking Using Events and Frames[J]. International Journal of Computer Vision, 2020, 128(3): 601-618. |
35 | MAQUEDA A I, LOQUERCIO A, GALLEGO G, et al. Event-Based Vision Meets Deep Learning on Steering Prediction for Self-Driving Cars[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5419-5427. |
36 | LI Jianing, DONG Siwei, YU Zhaofei, et al. Event-Based Vision Enhanced: A Joint Detection Framework in Autonomous Driving[C]∥2019 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2019: 1396-1401. |
37 | JIANG Zhuangyi, XIA Pengfei, HUANG Kai, et al. Mixed Frame-/Event-Driven Fast Pedestrian Detection[C]∥2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2019: 8332-8338. |
38 | ZHU Zihao, YUAN Liangzhe, CHANEY K, et al. EV-FlowNet: Self-Supervised Optical Flow Estimation for Event-Based Cameras[EB/OL]. (2018-08-13) [2023-08-09]. . |
39 | WANG Lin, MOSTAFAVI I S M, HO Y S, et al. Event-Based High Dynamic Range Image and Very High Frame Rate Video Generation Using Conditional Generative Adversarial Networks[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 10073-10082. |
40 | ALONSO I, MURILLO A C. EV-SegNet: Semantic Segmentation for Event-Based Cameras[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2019: 1624-1633. |
41 | CANNICI M, CICCONE M, ROMANONI A, et al. Attention Mechanisms for Object Recognition with Event-Based Cameras[C]∥2019 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE, 2019: 1127-1136. |
42 | SEKIKAWA Y, ISHIKAWA K, SAITO H. Constant Velocity 3D Convolution[J]. IEEE Access, 2018, 6: 76490-76501. |
43 | POSCH C, SERRANO-GOTARREDONA T, LINARES-BARRANCO B, et al. Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras with Spiking Output[J]. Proceedings of the IEEE, 2014, 102(10): 1470-1484. |
44 | GAO Shan, GUO Guangqian, HUANG Hanqiao, et al. An End-to-End Broad Learning System for Event-Based Object Classification[J]. IEEE Access, 2020, 8: 45974-45984. |
45 | TULYAKOV S, FLEURET F, KIEFEL M, et al. Learning an Event Sequence Embedding for Dense Event-Based Deep Stereo[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2019: 1527-1537. |
46 | SEKIKAWA Y, HARA K, SAITO H. EventNet: Asynchronous Recursive Event Processing[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 3882-3891. |
47 | WANG Qinyi, ZHANG Yexin, YUAN Junsong, et al. Space-Time Event Clouds for Gesture Recognition: From RGB Cameras to Event Cameras[C]∥2019 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE, 2019: 1826-1835. |
48 | YANG Jiancheng, ZHANG Qiang, NI Bingbing, et al. Modeling Point Clouds with Self-Attention and Gumbel Subset Sampling[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 3318-3327. |
49 | BI Yin, CHADHA A, ABBAS A, et al. Graph-Based Spatio-Temporal Feature Learning for Neuromorphic Vision Sensing[J]. IEEE Transactions on Image Processing, 2020, 29: 9084-9098. |
50 | LI Yijin, ZHOU Han, YANG Bangbang, et al. Graph-Based Asynchronous Event Processing for Rapid Object Recognition[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2021: 914-923. |
51 | ROSSI E, CHAMBERLAIN B, FRASCA F, et al. Temporal Graph Networks for Deep Learning on Dynamic Graphs[EB/OL]. (2020-10-09) [2023-08-09]. . |
52 | SCHAEFER S, GEHRIG D, SCARAMUZZA D. AEGNN: Asynchronous Event-Based Graph Neural Networks[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 12361-12371. |
53 | ZHOU Qian, LI Xiaohu. A Bio-Inspired Hierarchical Spiking Neural Network with Reward-Modulated STDP Learning Rule for AER Object Recognition[J]. IEEE Sensors Journal, 2022, 22(16): 16323-16338. |
54 | SHE Xueyuan, MUKHOPADHYAY S. SPEED: Spiking Neural Network with Event-Driven Unsupervised Learning and Near-Real-Time Inference for Event-Based Vision[J]. IEEE Sensors Journal, 2021, 21(18): 20578-20588. |
55 | ZHAO Bo, DING Ruoxi, CHEN Shoushun, et al. Feedforward Categorization on AER Motion Events Using Cortex-Like Features in a Spiking Neural Network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 1963-1978. |
56 | SHRESTHA S B, ORCHARD G. SLAYER: Spike Layer Error Reassignment in Time[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 1419-1428. |
57 | ACHARYA J, PADALA V, BASU A. Spiking Neural Network Based Region Proposal Networks for Neuromorphic Vision Sensors[C]∥2019 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway: IEEE, 2019: 1-5. |
58 | BING Zhenshan, MESCHEDE C, HUANG Kai, et al. End to End Learning of Spiking Neural Network Based on R-STDP for a Lane Keeping Vehicle[C]∥2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2018: 4725-4732. |
59 | MUEGGLER E, REBECQ H, GALLEGO G, et al. The Event-Camera Dataset and Simulator: Event-Based Data for Pose Estimation, Visual Odometry, and SLAM[J]. The International Journal of Robotics Research, 2017, 36(2): 142-149. |
60 | REBECQ H, GEHRIG D, SCARAMUZZA D. ESIM: An Open Event Camera Simulator[C]∥Proceedings of the 2nd Conference on Robot Learning. Chia Laguna Resort: PMLR, 2018: 969-982. |
61 | GEHRIG D, GEHRIG M, HIDALGO-CARRIÓ J, et al. Video to Events: Recycling Video Datasets for Event Cameras[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 3583-3592. |
62 | ZIEGLER A, TEIGLAND D, TEBBE J, et al. Real-Time Event Simulation with Frame-Based Cameras[C]∥2023 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2023: 11669-11675. |
63 | HU Yuhuang, LIU S C, DELBRUCK T. v2e: From Video Frames to Realistic DVS Events[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2021: 1312-1321. |
64 | ORCHARD G, JAYAWANT A, COHEN G K, et al. Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades[J]. Frontiers in Neuroscience, 2015, 9: 437. |
65 | SERRANO-GOTARREDONA T, LINARES-BARRANCO B. Poker-DVS and MNIST-DVS. Their History, How They Were Made, and Other Details[J]. Frontiers in Neuroscience, 2015, 9: 481. |
66 | LI Hongmin, LIU Hanchao, JI Xiangyang, et al. CIFAR10-DVS: An Event-Stream Dataset for Object Classification[J]. Frontiers in Neuroscience, 2017, 11: 309. |
67 | AMIR A, TABA B, BERG D, et al. A Low Power, Fully Event-Based Gesture Recognition System[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 7388-7397. |
68 | SIRONI A, BRAMBILLA M, BOURDIS N, et al. HATS: Histograms of Averaged Time Surfaces for Robust Event-Based Object Classification[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1731-1740. |
69 | BI Yin, CHADHA A, ABBAS A, et al. Graph-Based Object Classification for Neuromorphic Vision Sensing[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2019: 491-501. |
70 | MIAO Shu, CHEN Guang, NING Xiangyu, et al. Neuromorphic Vision Datasets for Pedestrian Detection, Action Recognition, and Fall Detection[J]. Frontiers in Neurorobotics, 2019, 13: 38. |
71 | CALABRESE E, TAVERNI G, EASTHOPE C A, et al. DHP19: Dynamic Vision Sensor 3D Human Pose Dataset[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2019: 1695-1704. |
72 | HU Yuhuang, LIU Hongjie, PFEIFFER M, et al. DVS Benchmark Datasets for Object Tracking, Action Recognition, and Object Recognition[J]. Frontiers in Neuroscience, 2016, 10: 405. |
73 | MITROKHIN A, FERMÜLLER C, PARAMESHWARA C, et al. Event-Based Moving Object Detection and Tracking[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2018: 1-9. |
74 | MITROKHIN A, YE Chengxi, FERMÜLLER C, et al. EV-IMO: Motion Segmentation Dataset and Learning Pipeline for Event Cameras[C]∥2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2019: 6105-6112. |
75 | CHENG Wensheng, LUO Hao, YANG Wen, et al. DET: A High-Resolution DVS Dataset for Lane Extraction[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2019: 1666-1675. |
76 | ZHU A Z, THAKUR D, ÖZASLAN T, et al. The Multivehicle Stereo Event Camera Dataset: An Event Camera Dataset for 3D Perception[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2032-2039. |
77 | LEUNG S, SHAMWELL E J, MAXEY C, et al. Toward a Large-Scale Multimodal Event-Based Dataset for Neuromorphic Deep Learning Applications[C]∥ Proceedings Volume 10639, Micro-and Nanotechnology Sensors, Systems, and Applications X. Bellingham: SPIE, 2018: 106391T. |
78 | DELMERICO J, CIESLEWSKI T, REBECQ H, et al. Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset[C]∥2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2019: 6713-6719. |
79 | GEHRIG D, REBECQ H, GALLEGO G, et al. Asynchronous, Photometric Feature Tracking Using Events and Frames[C]∥Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 766-781. |
80 | COHEN G, AFSHAR S, MORREALE B, et al. Event-Based Sensing for Space Situational Awareness[J]. The Journal of the Astronautical Sciences, 2019, 66(2): 125-141. |
81 | RALPH N O, MARCIREAU A, AFSHAR S, et al. Astrometric Calibration and Source Characterisation of the Latest Generation Neuromorphic Event-based Cameras for Space Imaging[J]. Astrodynamics, 2023, 7(4): 415-443. |
82 | AFSHAR S, NICHOLSON A P, VAN SCHAIK A, et al. Event-Based Object Detection and Tracking for Space Situational Awareness[J]. IEEE Sensors Journal, 2020, 20(24): 15117-15132. |
83 | MCMAHON-CRABTREE P N, MONET D G. Commercial-off-the-Shelf Event-Based Cameras for Space Surveillance Applications[J]. Applied Optics, 2021, 60(25): G144-G153. |
84 | ROFFE S, AKOLKAR H, GEORGE A D, et al. Neutron-Induced, Single-Event Effects on Neuromorphic Event-Based Vision Sensor: A First Step and Tools to Space Applications[J]. IEEE Access, 2021, 9: 85748-85763. |
85 | 吕媛媛, 刘朝晖, 乔文龙, 等. 空间目标事件相机探测能力分析[J]. 光子学报, 2023, 52(2): 173-184. |
Yuanyuan LÜ, LIU Zhaohui, QIAO Wenlong, et al. Analysis of Detection Capability of Space Target Based on Event Camera[J]. Acta Photonica Sinica, 2023, 52(2): 173-184. | |
86 | TINCH L, MENON N, HIRAKAWA K, et al. Event-Based Detection, Tracking, and Recognition of Unresolved Moving Objects[C]∥Advanced Maui Optical and Space Surveillance Technologies Conference. [S.l.: s.n.], 2022:1-12. |
87 | OLIVER R, MCREYNOLDS B, SAVRANSKY D. Event-Based Sensor Multiple Hypothesis Tracker for Space Domain Awareness[C]∥Advanced Maui Optical and Space Surveillance Technologies Conference. [S.l.:s.n.], 2022: 1-15. |
88 | LI Wenbin, SAEEDI S, MCCORMAC J, et al. InteriorNet: Mega-Scale Multi-Sensor Photo-Realistic Indoor Scenes Dataset[C]. (2018-09-03) [2023-08-09]. . |
89 | QI C R, YI Li, SU Hao, et al. PointNet++: Deep Hierarchical Feature Learning on Point sets in a Metric Space[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 5105-5114. |
90 | LI Yangyan, BU Rui, SUN Mingchao, et al. PointCNN: Convolution On X-Transformed Points[EB/OL]. (2018-11-05) [2023-08-09]. . |
91 | INDIVERI G, LIU S C. Memory and Information Processing in Neuromorphic Systems[J]. Proceedings of the IEEE, 2015, 103(8): 1379-1397. |
92 | NEIL D, PFEIFFER M, LIU S C. Phased LSTM: Accelerating Recurrent Network Training for Long or Event-Based Sequences[C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3889-3897 |
[1] | Hongyan ZANG, Kai WANG, Changsheng GAO, Wuxing JING, Yuexin WANG. Trajectory Tracking of Hypersonic Vehicles Based on Moving Horizon Estimation [J]. Modern Defense Technology, 2024, 52(2): 132-144. |
[2] | Wenru FAN, Quanwei LIU, Bailing TIAN. Trajectory Tracking Control of Quadrotor UAV Based on Disturbance Compensation [J]. Modern Defense Technology, 2024, 52(2): 87-93. |
[3] | Songyao DOU, Ying CHEN, Yan CHEN, Zhengwei LIU. A High Order Motion Feature Estimation Method for Multi-radar Maneuvering Target Detection [J]. Modern Defense Technology, 2024, 52(1): 102-110. |
[4] | Saiguo ZHAO, Yuwei YAO. A Decoupling Method of Ranging Tone Power for a Miniaturized USB TT&C Transponder [J]. Modern Defense Technology, 2023, 51(4): 63-68. |
[5] | Yuyan TANG. Analysis and Evaluation of Core Capabilities of US Ground-Based Midcourse Defense [J]. Modern Defense Technology, 2023, 51(3): 10-19. |
[6] | Yongzheng YU, Xuehui SHAO, Shibo GAO, Zhiwei PU, Bing XUE. Optimal Configuration Design for Multi-platform Collaborative Target Tracking [J]. Modern Defense Technology, 2023, 51(3): 107-119. |
[7] | Ming HE, Zihan ZHU, Xulong ZHAI, Zheng ZHAI, Chengpeng HAO. Air-to-Ground Target Detection Algorithm Based on Multi-branch Context Fusion [J]. Modern Defense Technology, 2023, 51(3): 91-98. |
[8] | Biyan LI, Shun HU. Formation Control of UAV Swarm with Bearing-Only Measurements [J]. Modern Defense Technology, 2023, 51(2): 55-61. |
[9] | Wenhua HU, Changan ZHU, Dongfang XUE, Xi ZHAO, Rui YANG. Design and Implementation of Radar Condition Monitoring and Comprehensive Performance Evaluation System [J]. Modern Defense Technology, 2023, 51(2): 133-140. |
[10] | Xue-zhen JIA, Wu SUN, Qiu-feng XU, Rui-rong CHEN. Range Walk Analysis and Compensation Algorithm of Interrupted Continuous Wave Dechirp System [J]. Modern Defense Technology, 2022, 50(6): 83-89. |
[11] | Fang-yu ZHOU, Jie ZHOU, Chao-bo CHEN, Song GAO. Cooperative Detection and Tracking of UAV Swarms Based on Clonal Immune Decision-Making [J]. Modern Defense Technology, 2022, 50(5): 93-105. |
[12] | Xue-qi SUN, Rui ZHANG. Research on Midcourse Guidance for Intercepting HTV2 Based on Trajectory Tracking and Prediction [J]. Modern Defense Technology, 2022, 50(4): 62-72. |
[13] | Yan DAI, Dan LIU, Qing-rong HU, Cheng-zeng CHEN, Yue-xun WANG. Phase Compensation Accumulation Method Based for Radar Echo Splitting [J]. Modern Defense Technology, 2022, 50(3): 84-89. |
[14] | Hai-han LIU, LU¨ Wei-xiang. A Phase Coherent Accumulation Algorithm of Moving Target Based on Time Reversal Transformation [J]. Modern Defense Technology, 2022, 50(2): 67-75. |
[15] | Ke LIU, Guang-yu PAN, Da-guo ZHENG, Jiao-jiao GU, Chun-ying MENG. An Aerial Forensic Target Detection Algorithm Based on RetinaNet and SE Fusion [J]. Modern Defense Technology, 2022, 50(1): 25-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||