Modern Defense Technology ›› 2025, Vol. 53 ›› Issue (2): 45-54.DOI: 10.3969/j.issn.1009-086x.2025.02.005
• AIR SPACE DEFENSE SYSTEM AND WEAPON • Previous Articles Next Articles
Haiyan ZHAO1,2, Feng ZHOU1, Wenjing YANG2, Di LIU1,3, Tianyuan YANG1
Received:
2024-06-03
Revised:
2024-08-08
Online:
2025-04-28
Published:
2025-04-30
Contact:
Feng ZHOU
赵海燕1,2, 周峰1, 杨文静2, 刘迪1,3, 杨添元1
通讯作者:
周峰
作者简介:
赵海燕(1978-),女,山西侯马人。副教授,博士,研究方向为反导装备体系效能评估。
基金资助:
CLC Number:
Haiyan ZHAO, Feng ZHOU, Wenjing YANG, Di LIU, Tianyuan YANG. Research on Effectiveness Evaluation Method of Anti-missile Equipment System Based on GWO-DBN[J]. Modern Defense Technology, 2025, 53(2): 45-54.
赵海燕, 周峰, 杨文静, 刘迪, 杨添元. 基于GWO-DBN的反导装备体系效能评估方法研究[J]. 现代防御技术, 2025, 53(2): 45-54.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xdfyjs.cn/EN/10.3969/j.issn.1009-086x.2025.02.005
指标 | 样本值 | 指标 | 样本值 |
---|---|---|---|
区域覆盖率x1 | 0.95 | 导引头探测距离x19/m | 2 500 |
最大探测距离x2/km | 1 500 | 导引头探测精度x20 | 0.90 |
虚警率x3 | 0.08 | 导弹弹道特性x21 | 0.90 |
识别概率x4 | 0.92 | 导弹隐身能力x22 | 0.85 |
识别时间x5/s | 3 | 导弹目标拦截能力x23 | 0.90 |
弹体定位精度x6 | 0.75 | 导弹引信性能x24 | 0.85 |
跟踪精度x7 | 0.85 | 单发杀伤概率x25 | 0.85 |
成像卫星重访周期x8/d | 5 | 多发杀伤概率x26 | 0.97 |
指挥员水平x9(分) | 92 | 被干扰概率x27 | 0.85 |
信息处理时延x10/s | 4.5 | 被摧毁概率x28 | 0.35 |
信息处理种类x11(种) | 35 | 定位距离误差x29/m | 10 |
指控决策精度x12 | 0.90 | 基准时间误差x30/ns | 0.05 |
指控时间x13/min | 3.5 | 信息融合精度x31 | 0.92 |
决策响应时间x14/s | 15 | 导弹巡航Ma数x32 | 2.4 |
指挥机关水平x15(分) | 95 | 传输时延x33/ms | 2 |
系统反应时间x16/s | 12 | 误码率x34 | 0.1 |
火力通道数x17(个) | 5 | 信噪比x35/dB | 20 |
导引头识别率x18 | 0.8 | 连通率x36 | 0.95 |
Table 1 Sample of anti-missile system efficiency index
指标 | 样本值 | 指标 | 样本值 |
---|---|---|---|
区域覆盖率x1 | 0.95 | 导引头探测距离x19/m | 2 500 |
最大探测距离x2/km | 1 500 | 导引头探测精度x20 | 0.90 |
虚警率x3 | 0.08 | 导弹弹道特性x21 | 0.90 |
识别概率x4 | 0.92 | 导弹隐身能力x22 | 0.85 |
识别时间x5/s | 3 | 导弹目标拦截能力x23 | 0.90 |
弹体定位精度x6 | 0.75 | 导弹引信性能x24 | 0.85 |
跟踪精度x7 | 0.85 | 单发杀伤概率x25 | 0.85 |
成像卫星重访周期x8/d | 5 | 多发杀伤概率x26 | 0.97 |
指挥员水平x9(分) | 92 | 被干扰概率x27 | 0.85 |
信息处理时延x10/s | 4.5 | 被摧毁概率x28 | 0.35 |
信息处理种类x11(种) | 35 | 定位距离误差x29/m | 10 |
指控决策精度x12 | 0.90 | 基准时间误差x30/ns | 0.05 |
指控时间x13/min | 3.5 | 信息融合精度x31 | 0.92 |
决策响应时间x14/s | 15 | 导弹巡航Ma数x32 | 2.4 |
指挥机关水平x15(分) | 95 | 传输时延x33/ms | 2 |
系统反应时间x16/s | 12 | 误码率x34 | 0.1 |
火力通道数x17(个) | 5 | 信噪比x35/dB | 20 |
导引头识别率x18 | 0.8 | 连通率x36 | 0.95 |
1 | 燕雪峰, 张德平, 黄晓冬, 等. 面向任务的体系效能评估[M]. 北京: 电子工业出版社, 2020. |
YAN Xuefeng, ZHANG Deping, HUANG Xiaodong, et al. Mission Oriented Effectiveness Evaluation and Optimization of System of Systems[M]. Beijing: Publishing House of Electronics Industry, 2020. | |
2 | HELMBOLD R L. Letter to the Editor—A Modification of Lanchester's Equations[J]. Operations Research, 1965, 13(5): 857-859. |
3 | TAYLOR J G. Lanchester-Type Models of Warfare and Optimal Control[J]. Naval Research Logistics Quarterly, 1974, 21(1): 79-106. |
4 | 杨建, 董岩, 边月奎, 等. 联合作战背景下的体系效能评估方法[J]. 科技导报, 2022, 40(4): 106-117. |
YANG Jian, DONG Yan, BIAN Yuekui, et al. Effectiveness Evaluation for System-of-Systems: A Review of the State of the Art[J]. Science & Technology Review, 2022, 40(4): 106-117. | |
5 | TUNCER O, CIRPAN H A. Adaptive Fuzzy Based Threat Evaluation Method for Air and Missile Defense Systems[J]. Information Sciences, 2023, 643: 119191. |
6 | 李春臻, 刘婵媛, 高文霞, 等. 基于ADC方法的炮射导弹系统效能评估[J]. 计算机测量与控制, 2022, 30(4): 142-148. |
LI Chunzhen, LIU Chanyuan, GAO Wenxia, et al. Effectiveness Evaluation of the Gun-Launched Missile System Based on the ADC Method[J]. Computer Measurement & Control, 2022, 30(4): 142-148. | |
7 | HU Jianwen, WANG Zhihui, GAO Yuan, et al. Uncertainty Entropy-Based Exploratory Evaluation Method and Its Applications on Missile Effectiveness Evaluation[J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1602-1613. |
8 | QU Shi, LIU Jianxun, LIU Jie. A Method for Evaluating the Effectiveness of Antimissile Early Warning Operations Based on SEA[C]∥2023 IEEE International Conference on Sensors, Electronics and Computer Engineering (ICSECE). Piscataway: IEEE, 2023: 1300-1303. |
9 | JIA Yachao, YANG Zhen, HE Yupeng, et al. Dynamic Effectiveness Evaluation Method for Beyond-Visual-Range Air-to-Air Missile After Launch[C]∥2023 IEEE International Conference on Unmanned Systems (ICUS). Piscataway: IEEE, 2023: 482-487. |
10 | 赵海燕, 周峰, 杨文静, 等. 基于IPSO-SVR的反导装备体系效能评估方法研究[J]. 空军工程大学学报, 2024, 25(5): 82-89. |
ZHAO Haiyan, ZHOU Feng, YANG Wenjing, et al. Research on Effectiveness Evaluation Method in Anti-Missile Equipment System Based on IPSO-SVR[J]. Journal of Air Force Engineering University, 2024, 25(5): 82-89. | |
11 | 李妮, 李玉红, 龚光红, 等. 基于深度学习的体系作战效能智能评估及优化[J]. 系统仿真学报, 2020, 32(8): 1425-1435. |
LI Ni, LI Yuhong, GONG Guanghong, et al. Intelligent Effectiveness Evaluation and Optimization on Weapon System of Systems Based on Deep Learning[J]. Journal of System Simulation, 2020, 32(8): 1425-1435. | |
12 | 李清亮, 林焕明, 吴振宙, 等. 基于改进狼群算法-深度置信网络(IGWO-DBN)模型的旋风分离器压降预测[J]. 北京化工大学学报(自然科学版), 2023, 50(1): 107-115. |
LI Qingliang, LIN Huanming, WU Zhenzhou, et al. Pressure Drop Prediction for a Cyclone Separator Based on an Improved Grey Wolf Optimizer-Deep Belief Network (IGWO-DBN) Model[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2023, 50(1): 107-115. | |
13 | XU Lihong, ZHANG Shenghuan. Music Feature Recognition and Classification Using a Deep Learning Algorithm[J]. International Journal of Computational Intelligence and Applications, 2023, 22(3): 2350012. |
14 | 高星, 高飞, 高原, 等. 基于深度置信网络的火炮炮口振动预测研究[J]. 火力与指挥控制, 2023, 48(11): 164-168. |
GAO Xing, GAO Fei, GAO Yuan, et al. A Study on the Prediction of Muzzle Vibration Based on DBN[J]. Fire Control & Command Control, 2023, 48(11): 164-168. | |
15 | 胡春艳, 于来行. 改进深度置信网络的苹果内部品质评价[J]. 食品与机械, 2022, 38(4): 156-161, 206. |
HU Chunyan, YU Laihang. Evaluation of Apple Inner Quality Based on Improved Deep Belief Network[J]. Food & Machinery, 2022, 38(4): 156-161, 206. | |
16 | GURUVAMMAL S, CHELLATAMILAN T, DEBORAH L J. Automatic Detection of Autism in Young Children Using Weighted Logarithmic Transformed Data with Optimized Deep Learning[J]. The Computer Journal, 2022, 65(10): 2678-2692. |
17 | 张凯, 杨朋澄, 彭开香, 等. 基于深度置信网络的多模态过程故障评估方法及应用[J]. 自动化学报, 2024, 50(1): 89-102. |
ZHANG Kai, YANG Pengcheng, PENG Kaixiang, et al. A Deep Belief Network-Based Fault Evaluation Method for Multimode Processes and Its Applications[J]. Acta Automatica Sinica, 2024, 50(1): 89-102. | |
18 | 刘帼巾, 刘达明, 缪建华, 等. 基于变分模态分解和改进灰狼算法优化深度置信网络的自动转换开关故障识别[J]. 电工技术学报, 2024, 39(4): 1221-1233. |
LIU Guojin, LIU Daming, MIAO Jianhua, et al. Fault Identification of Automatic Transfer Switching Equipment Based on VMD-WPE and IGWO Optimized DBN[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1221-1233. | |
19 | KARUNAKAR REDDY V, KUMAR AV R. Multi-Channel Neuro Signal Classification Using Adam-Based Coyote Optimization Enabled Deep Belief Network[J]. Biomedical Signal Processing and Control, 2022, 77: 103774. |
20 | 陈剑, 黄志, 徐庭亮, 等. 基于改进二进制粒子群算法优化DBN的轴承故障诊断[J]. 组合机床与自动化加工技术, 2024(1): 168-173. |
CHEN Jian, HUANG Zhi, XU Tingliang, et al. DBN Is Optimized Based on Improved Binary Particle Swarm Algorithm Bearing Fault Diagnosis[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(1): 168-173. | |
21 | TANG Lu, HUI Yu, YANG Hang, et al. Medical Image Fusion Quality Assessment Based on Conditional Generative Adversarial Network[J]. Frontiers in Neuroscience, 2022, 16: 986153. |
22 | LAUNAY H, RYCKELYNCK D, LACOURT L, et al. Deep Multimodal Autoencoder for Crack Criticality Assessment[J]. International Journal for Numerical Methods in Engineering, 2022, 123(6): 1456-1480. |
23 | 吴涌钏, 孙刚, 陶俊. 基于深度置信网络与多目标粒子群算法的通用飞机机翼优化设计[J]. 空气动力学学报, 2023, 41(12): 16-27. |
WU Yongchuan, SUN Gang, TAO Jun. Optimization Design on the Wing of a General Aviation Airplane Based on Deep Belief Network and Multi-Objective Particle Swarm Optimization Algorithm[J]. Acta Aerodynamica Sinica, 2023, 41(12): 16-27. | |
24 | QIN Minglei, YANG Yongbiao, ZHAO Xianqiu, et al. Low-Carbon Economic Multi-Objective Dispatch of Integrated Energy System Considering the Price Fluctuation of Natural Gas and Carbon Emission Accounting[J]. Protection and Control of Modern Power Systems, 2023, 8(1): 61. |
25 | 黄波, 杨正, 王超. 基于灰狼算法优化DBN的医院网络异常流量识别[J]. 微型电脑应用, 2022, 38(1): 34-36, 44. |
HUANG Bo, YANG Zheng, WANG Chao. Recognition of Abnormal Traffic in Hospital Network Based on Gray Wolf Algorithm to Optimize DBN[J]. Microcomputer Applications, 2022, 38(1): 34-36, 44. |
[1] | Runze WU, Weishi PENG, Yixuan MA. Evaluation of Combat Effectiveness of Anti-UAV Swarm System Based on Improved TOPSIS Method [J]. Modern Defense Technology, 2025, 53(1): 63-72. |
[2] | Baogang LI, Shuang CUI, Depeng DONG. Reduction Method of Air Defense Missile Equipment Maintenance Support Effectiveness Evaluation Index Based on Improved Vague Set [J]. Modern Defense Technology, 2024, 52(6): 105-111. |
[3] | Liping YANG, Qiqing FANG, Yahui HU, Chenggang GU, Huimin WANG. Research on Knowledge Graph Construction Method of Early Warning Equipment Based on Deep Learning [J]. Modern Defense Technology, 2024, 52(5): 61-72. |
[4] | Henglei XU, Shuaiqi CHEN, Xun SONG, Mingjie ZHU. Blade Stitching Technology Based on Image Semantic Segmentation and Structure Preservation Constraints [J]. Modern Defense Technology, 2024, 52(4): 123-129. |
[5] | Yongjun TU, Hongsheng LIN, Zhiyong WANG. Underwater Image Background and Foreground Segmentation Method with Parallel Convolution [J]. Modern Defense Technology, 2024, 52(3): 104-111. |
[6] | Yang LI, Xiao LIANG, Haisa JIA. Ship Detection in SAR Images Based on Knowledge Distillation [J]. Modern Defense Technology, 2023, 51(4): 78-85. |
[7] | Bin WANG, Jice WANG, Ying SHANG, Xiaofei WANG, Quan WEN. Effectiveness Evaluation and Defense Strategies for Network Attacks of Air and Missile Defense System [J]. Modern Defense Technology, 2023, 51(3): 57-65. |
[8] | Baoyin YAO, Lei MAO, Zhibin WANG. Applications of Artificial Intelligence in Space Equipment [J]. Modern Defense Technology, 2023, 51(2): 33-42. |
[9] | Lei YUE, Jianhu YUAN, Liu YANG, Tingting LÜ. Research on a Patrol Duty Object Detection Algorithm [J]. Modern Defense Technology, 2023, 51(1): 67-74. |
[10] | Jia-wei BAO, Xiao-ping TIAN, Yu-na LIU, Chang-kuan ZOU, Yu-qing ZHANG. Summary of Research on Security Issues of ADS-B Protocol [J]. Modern Defense Technology, 2022, 50(5): 28-35. |
[11] | GONG Liang, WANG Qing-quan, LUO Hong-ji. Real Combat-Like Improved Model of Operational Effectiveness Evaluation of Air Defense Missile Weapon System [J]. Modern Defense Technology, 2021, 49(6): 9-15. |
[12] | YAO Bao-yin, MAO Lei, XIAO Ke, QU Hui. Applications of Artificial Intelligence on the Optical Earth Observation [J]. Modern Defense Technology, 2021, 49(5): 26-31. |
[13] | JI Zheng-yi, CHEN Yang, SHEN Pei-zhi, HAN Xian-ping, QI Hong-kun. Decision Tree Integration Method Application in Effectiveness Evaluation of Anti-Ship Missile Weapon System [J]. Modern Defense Technology, 2021, 49(4): 15-23. |
[14] | YANG Jian-bo, ZONG Si-guang. Research on Effectivess Evaluation Method of Anti-Ship Missile Weapon System Based on Fuzzy-ADC Model [J]. Modern Defense Technology, 2021, 49(3): 55-62. |
[15] | WANG Wen-qing, PANG Ying, LIU Yang, YANG Dong-fang, ZHANG Meng. Air-to-Ground Target Intelligent Detection Algorithm Based on Dual Attention Mechanism [J]. Modern Defense Technology, 2020, 48(6): 81-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||