Modern Defense Technology ›› 2025, Vol. 53 ›› Issue (2): 175-182.DOI: 10.3969/j.issn.1009-086x.2025.02.019

• INTEGRATED LOGISTICS SUPPORT TECHNOLOGY • Previous Articles     Next Articles

Method for Predicting the Satisfaction and Utilization Rates of Spare Based on BP Neural Networks

Xinru WANG1,2, Shaokang TANG1,2, Jianjun YANG1,2   

  1. 1.The Fifth Electronics Research Institute of MIIT,Center for Comprehensive Equipment Support Research,Guangzhou 511370,China
    2.Guangzhou CEPREI Tengrui Information Technology Co. ,Ltd,Guangzhou 511370,China
  • Received:2024-02-04 Revised:2024-04-03 Online:2025-04-28 Published:2025-04-30

基于BP神经网络的备件满足率与利用率预测方法

王欣汝1,2, 唐少康1,2, 杨建军1,2   

  1. 1.工业和信息化部电子第五研究所 装备综合保障研究中心,广东 广州 511370
    2.广州赛宝腾睿信息科技有限公司,广东 广州 511370
  • 作者简介:王欣汝(1994-),女,浙江台州人。工程师,硕士,研究方向为装备通用质量特性及综合保障。

Abstract:

By leveraging the correspondence between spares configuration schemes and equipment support performance, the BP(back propagation) neural network model is used to adjust the mapping relationship between spares configuration schemes and their corresponding satisfaction and utilization rates. This facilitates the evaluation of the rationality of spares configuration scheme design. Using three types of equipment with different structural compositions as examples, the corresponding neural network prediction models for the satisfaction and utilization rates of spares are designed and trained with data samples. This achieves fast and high-precision calculations of the satisfaction and utilization rates of spare parts, with both the mean error and mean square error being less than 0.05%, demonstrating the effectiveness of the proposed method.

Key words: spares configuration scheme, BP(back propagation) neural network, support efficiency, spares satisfaction rate, spares utilization rate

摘要:

针对备件满足率与利用率的计算、预测问题,提出了一种基于BP神经网络的预测方法。依据备件配置方案与装备保障效能之间存在的影响关系,设计神经网络模型拟合备件配置方案与其对应满足率、利用率之间的映射关系,实现备件配置方案设计合理性的评估。以3类不同组成结构的装备为例,设计对应的备件满足率与利用率神经网络预测模型,并通过数据样本进行训练,实现了快速、高精度的备件满足率与利用率的预测。算法耗时短且平均误差与均方误差均小于0.05%,证明了所提方法的有效性。

关键词: 备件配置方案, BP神经网络, 保障效能, 备件满足率, 备件利用率

CLC Number: